Sustainable energy solutions through AI and software engineering: Optimizing resource management in renewable energy systems
Keywords:
sustainable energy solutions, AI, software engineering, resource management, renewable energy systems, predictive analytics, energy optimization, grid managementAbstract
Sustainable energy solutions are increasingly critical in addressing global energy demands while minimizing environmental impact. The integration of artificial intelligence (AI) and software engineering plays a transformative role in optimizing resource management within renewable energy systems. This paper explores how AI technologies, including machine learning, predictive analytics, and data-driven modeling, can enhance the efficiency and reliability of renewable energy sources such as solar, wind, and hydroelectric power. By leveraging advanced algorithms, these technologies enable the optimization of energy production, consumption, and distribution, significantly improving overall system performance. One of the primary applications of AI in renewable energy is in forecasting energy generation and demand. Machine learning algorithms analyze historical data and real-time inputs to predict fluctuations in energy production due to weather conditions or seasonal variations. This predictive capability allows for more accurate planning and utilization of resources, ensuring that energy supply aligns with demand. Additionally, AI can optimize grid management by facilitating real-time monitoring and control of distributed energy resources, enhancing grid resilience and reducing energy losses. Furthermore, software engineering methodologies, such as agile development and model-driven engineering, are instrumental in designing and deploying intelligent energy management systems. These systems can automate decision-making processes, enabling rapid responses to changing energy conditions and user demands. The result is a more flexible and responsive energy infrastructure capable of integrating diverse renewable sources while maintaining stability. Despite the promising benefits, challenges remain in the implementation of AI-driven solutions in renewable energy systems. Data privacy concerns, the need for high-quality data, and the potential for algorithmic bias require careful consideration. Addressing these challenges is essential for achieving widespread acceptance and effective deployment. In conclusion, the convergence of AI and software engineering presents innovative pathways for optimizing resource management in renewable energy systems. By harnessing these technologies, stakeholders can enhance the sustainability and efficiency of energy solutions, contributing to a cleaner, more resilient future.
References
Adeniran IA, Abhulimen AO, Obiki-Osafiele AN, Osundare OS, Efunniyi CP, Agu EE. Digital banking in Africa: A conceptual review of financial inclusion and socio-economic development. Int J Appl Res Soc Sci. 2022;4(10):451-80.
Adeoba MI. Phylogenetic analysis of extinction risk and diversification history of the African Cyprinidae using DNA barcodes [Doctoral dissertation]. University of Johannesburg, 2018.
Adeoba MI, Yessoufou K. Analysis of temporal diversification of African Cyprinidae (Teleostei, Cypriniformes). ZooKeys. 2018;(806):141.
Adeoba MI, Kabongo R, Van der Bank H, Yessoufou K. Re-evaluation of the discriminatory power of DNA barcoding on some specimens of African Cyprinidae (subfamilies Cyprininae and Danioninae). ZooKeys. 2018;(746):105.
Adeoba M, Tesfamichael SG, Yessoufou K. Preserving the tree of life of the fish family Cyprinidae in Africa in the face of the ongoing extinction crisis. Genome. 2019;62(3):170-82.
Adepoju O, Esan O, Akinyomi O. Food security in Nigeria: enhancing workers’ productivity in precision agriculture. J Digit Food Energy Water Syst. 2022;3(2).
Adika C, Wang L. Energy management for a customer-owned grid-tied photovoltaic micro generator, 2013. Available from: https://doi.org/10.1109/pesmg.2013.6672475
Agu EE, Abhulimen AO, Obiki-Osafiele AN, Osundare OS, Adeniran IA, Efunniyi CP. Artificial Intelligence in African Insurance: A review of risk management and fraud prevention. Int J Manag Entrep Res. 2022;4(12):768-94.
Al-Hafidh M, Ibrahem M. Hybrid power system for residential load. 2013;70-75. Available from: https://doi.org/10.1109/iceccpce.2013.6998737
Al-Nory M. Optimal decision guidance for the electricity supply chain integration with renewable energy: aligning smart cities research with sustainable development goals. IEEE Access. 2019;7:74996-75006. Available from: https://doi.org/10.1109/access.2019.2919408
Alotto P, Guarnieri M, Moro F. Redox flow batteries for the storage of renewable energy: a review. Renew Sustain Energy Rev. 2014;29:325-35. Available from: https://doi.org/10.1016/j.rser.2013.08.001
Arcelay I, Goti A, Oyarbide-Zubillaga A, Akyazi T, Celaya E, Bringas P. Definition of the future skills needs of job profiles in the renewable energy sector. Energies. 2021;14(9):2609. Available from: https://doi.org/10.3390/en14092609
Asif R. Deep neural networks for future low carbon energy technologies: potential, challenges and economic development. 2020. Available from: https://doi.org/10.1109/bigdataservice49289.2020.00028
Badal F, Das P, Sarker S, Das S. A survey on control issues in renewable energy integration and microgrid. Prot Control Mod Power Syst. 2019;4(1). Available from: https://doi.org/10.1186/s41601-019-0122-8
Bhuiyan MRA. Overcome the future environmental challenges through sustainable and renewable energy resources. Micro Nano Lett. 2022;17(14):402-16.
Bolte L, Vandemeulebroucke T, Wynsberghe A. From an ethics of carefulness to an ethics of desirability: going beyond current ethics approaches to sustainable AI. Sustainability. 2022;14(8):4472. Available from: https://doi.org/10.3390/su14084472
Borowski P. Digitization, digital twins, blockchain, and Industry 4.0 as elements of management process in enterprises in the energy sector. Energies. 2021;14(7):1885. Available from: https://doi.org/10.3390/en14071885
Cantarero MMV. Of renewable energy, energy democracy, and sustainable development: A roadmap to accelerate the energy transition in developing countries. Energy Res Soc Sci. 2020;70:101716.
Carmody J, Shringarpure S, Venter G. AI and privacy concerns: a smart meter case study. J Inf Commun Ethics Soc. 2021;19(4):492-505. Available from: https://doi.org/10.1108/jices-04-2021-0042
Chaleekure M, Boonraksa T, Junhuathon N, Marungsri B. Optimal design of hybrid renewable energy generation sources integrated with battery energy storage system; a case study of Nongplathao Park, Chaiyaphum Provincial Administration Organization, Thailand. 2018. Available from: https://doi.org/10.2991/iceea-18.2018.18
Chatterjee J, Dethlefs N. Facilitating a smoother transition to renewable energy with AI. Patterns. 2022;3(6):100528. doi:10.1016/j.patter.2022.100528
Chen Y, Xu J. Solar and wind power data from the Chinese state grid renewable energy generation forecasting competition. Sci Data. 2022;9(1). doi:10.1038/s41597-022-01696-6
Child M, Koskinen O, Linnanen L, Breyer C. Sustainability guardrails for energy scenarios of the global energy transition. Renew Sustain Energy Rev. 2018;91:321-34.
Creutzig F, Goldschmidt JC, Lehmann P, Schmid E, von Blücher F, Breyer C, et al. Catching two European birds with one renewable stone: Mitigating climate change and Eurozone crisis by an energy transition. Renew Sustain Energy Rev. 2014;38:1015-28.
Delina L. Accelerating Sustainable Energy Transition(s) in Developing Countries: The Challenges of Climate Change and Sustainable Development. Routledge; 2017.
Devaraj J, Elavarasan R, Shafiullah G, Jamal T, Khan I. A holistic review on energy forecasting using big data and deep learning models. Int J Energy Res. 2021;45(9):13489-530. doi:10.1002/er.6679
Dimitropoulos N, Sofias N, Kapsalis P, Mylona Z, Marinakis V, Primo N, et al. Forecasting of short-term PV production in energy communities through machine learning and deep learning algorithms. 2021:1-6. doi:10.1109/iisa52424.2021.9555544
Dolara A, Grimaccia F, Leva S, Mussetta M, Ogliari E. Comparison of training approaches for photovoltaic forecasts by means of machine learning. Appl Sci. 2018;8(2):228. doi:10.3390/app8020228
Dove R, LaBarge R. 8.4.2 Fundamentals of agile systems engineering – part 2. Incose Int Symp. 2014;24(1):876-92. doi:10.1002/j.2334-5837.2014.tb03187.x
Efunniyi CP, Abhulimen AO, Obiki-Osafiele AN, Osundare OS, Adeniran IA, Agu EE. Data analytics in African banking: A review of opportunities and challenges for enhancing financial services. Int J Manag Entrep Res. 2022;4(12):748-67.
Elkadeem M, Elaziz M, Ullah Z, Wang S, Sharshir S. Optimal planning of renewable energy-integrated distribution system considering uncertainties. IEEE Access. 2019;7:164887-907. doi:10.1109/access.2019.2947308
Eseye A, Lehtonen M, Tukia T, Uimonen S, Millar R. Day-ahead prediction of building district heat demand for smart energy management and automation in decentralized energy systems. doi:10.1109/indin41052.2019.8972297
Feng X, Tao Y, Hu J, Li Q. An operating control strategy of zinc bromine flow battery energy storage systems in microgrid. Adv Mater Res. 2014;1070-1072:449-55. doi:10.4028/www.scientific.net/amr.1070-1072.449
Garlík B. Application of artificial intelligence in the unit commitment system in the application of energy sustainability. Energies. 2022;15(9):2981. doi:10.3390/en15092981
Garrido E, Mendoza-Villena M, Lara-Santillán P, Zorzano-Alba E, Falces A. Net demand short-term forecasting in a distribution substation with PV power generation. E3S Web Conf. 2020;152:01001. doi:10.1051/e3sconf/202015201001
Gatla T. A cutting-edge research on AI combating climate change: Innovations and its impacts. Int J Innov Eng Res Technol. 2019;6(9):1-8. doi:10.26662/ijiert.v11i3.pp1-8
Gatla T. A cutting-edge research on AI combating climate change: Innovations and its impacts. Int J Innov Eng Res Technol. 2019;6(9):1-8. doi:10.26662/ijiert.v11i3.pp1-8
Gil-Ozoudeh I, Iwuanyanwu O, Okwandu AC, Ike CS. The role of passive design strategies in enhancing energy efficiency in green buildings. Eng Sci Technol J. 2022;3(2):71-91.
Gil-Ozoudeh I, Iwuanyanwu O, Okwandu AC, Ike CS. Life cycle assessment of green buildings: A comprehensive analysis of environmental impacts. Publisher; 2022:729-47.
Gil-Ozoudeh I, Iwuanyanwu O, Okwandu AC, Ike CS. Life cycle assessment of green buildings: A comprehensive analysis of environmental impacts. Publisher; 2022:729-47.
Haupt S, Kosović B, Jensen T, Lazo J, Lee J, Jiménez P, et al. Building the Sun4Cast system: Improvements in solar power forecasting. Bull Am Meteorol Soc. 2018;99(1):121-36. doi:10.1175/bams-d-16-0221.1
Iwuanyanwu O, Gil-Ozoudeh I, Okwandu AC, Ike CS. The integration of renewable energy systems in green buildings: Challenges and opportunities. J Appl.
Joy E, Bansal R, Ghenai C, Terzija V, Vorobev P, Kumar R, et al. Artificial intelligence and its applications in renewable integrated power systems. doi:10.46855/energy-proceedings-10186
Kabeyi MJB, Olanrewaju OA. Sustainable energy transition for renewable and low carbon grid electricity generation and supply. Front Energy Res. 2022;9:743114.
Kalair A, Abas N, Saleem M, Kalair A, Khan N. Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage. 2020;3(1). doi:10.1002/est2.135
Khan Z, Hussain T, Ullah A, Rho S, Lee M, Baik S. Towards efficient electricity forecasting in residential and commercial buildings: A novel hybrid CNN with a LSTM-AE based framework. Sensors. 2020;20(5):1399. doi:10.3390/s20051399
Kim I. Markov chain Monte Carlo and acceptance–rejection algorithms for synthesising short‐term variations in the generation output of the photovoltaic system. IET Renew Power Gener. 2017;11(6):878-88. doi:10.1049/iet-rpg.2016.0976
Kousar S, Ahmed F, García M, Ashraf N. Renewable energy consumption, water crises, and environmental degradation with moderating role of governance: Dynamic panel analysis under cross-sectional dependence. Sustainability. 2020;12(24):10308. doi:10.3390/su122410308
Kurokawa F, Tanaka M, Furukawa Y, Matsui N. Recent research trends of artificial intelligence applications in power electronics. Int J Renew Energy Res. 2021;11(3). doi:10.20508/ijrer.v11i3.11960.g8270
Kurupathi S, Maaß W. Survey on federated learning towards privacy preserving AI. doi:10.5121/csit.2020.101120
Kuzemko C, Bradshaw M, Bridge G, Goldthau A, Jewell J, Overland I, et al. Covid-19 and the politics of sustainable energy transitions. Energy Res Soc Sci. 2020;68:101685.
Kuzlu M, Cali Ü, Sharma V, Güler Ö. Gaining insight into solar photovoltaic power generation forecasting utilizing explainable artificial intelligence tools. IEEE Access. 2020;8:187814-23. doi:10.1109/access.2020.3031477
Laouafi A, Mordjaoui M, Dib D. One-hour ahead electric load and wind-solar power generation forecasting using artificial neural network. 2015;1-6. doi:10.1109/irec.2015.7110894
Li J, Liu W, Qi W. Hydrogen production technology by electrolysis of water and its application in renewable energy consumption. E3S Web Conf. 2021;236:02001. doi:10.1051/e3sconf/202123602001
Li Y, Wang C, Li G, Chen C. Optimal scheduling of integrated demand response-enabled integrated energy systems with uncertain renewable generations: a Stackelberg game approach. Energy Convers Manag. 2021;235:113996. doi:10.1016/j.enconman.2021.113996
Lima M, Carvalho P, Fernández‐Ramírez L, Braga A. Improving solar forecasting using deep learning and portfolio theory integration. Energy. 2020;195:117016. doi:10.1016/j.energy.2020.117016
Mallipeddi S. Harnessing AI and IoT technologies for sustainable business operations in the energy sector. Asia Pac J Energy Environ. 2022;9(1):37-48. doi:10.18034/apjee.v9i1.735
Mobarakeh S, Sadeghi R, Saghafi H, Delshad M. Robust management and optimization strategy of energy hub based on uncertainties probability modelling in the presence of demand response programs. IET Gener Transm Distrib. 2021;16(6):1166-88. doi:10.1049/gtd2.12358
Moghaddam S, Dashtdar M, Jafari H. AI applications in smart cities’ energy systems automation. Repa Proc Ser. 2022;3(1):1-5. doi:10.37357/1068/crgs2022.3.1.01
Moghaddam S, Dashtdar M, Jafari H. AI applications in smart cities’ energy systems automation. Repa Proc Ser. 2022;3(1):1-5. doi:10.37357/1068/crgs2022.3.1.01
Molyneaux L, Brown C, Wagner L, Foster J. Measuring resilience in energy systems: insights from a range of disciplines. Renew Sustain Energy Rev. 2016;59:1068-79. doi:10.1016/j.rser.2016.01.063
Nijhawan P, Oberoi A, Singh B. A novel design for a solar PV-wind hybrid system to improvise renewable energy harnessing – a theoretical study on Indian subcontinent. Int J Eng Technol. 2018;10(4):1112-8. doi:10.21817/ijet/2018/v10i4/181004027
Nijhawan P, Oberoi A, Singh B. A novel design for a solar PV-wind hybrid system to improvise renewable energy harnessing – a theoretical study on Indian subcontinent. Int J Eng Technol. 2018;10(4):1112-8. doi:10.21817/ijet/2018/v10i4/181004027
Nishant R, Kennedy M, Corbett J. Artificial intelligence for sustainability: challenges, opportunities, and a research agenda. Int J Inf Manag. 2020;53:102104. doi:10.1016/j.ijinfomgt.2020.102104
Nishant R, Kennedy M, Corbett J. Artificial intelligence for sustainability: challenges, opportunities, and a research agenda. Int J Inf Manag. 2020;53:102104. doi:10.1016/j.ijinfomgt.2020.102104
Okeke CI, Agu EE, Ejike OG, Ewim CP-M, Komolafe MO. A regulatory model for standardizing financial advisory services in Nigeria. Int J Frontline Res Sci Technol. 2022;1(2):67-82.
Okeke IC, Agu EE, Ejike OG, Ewim CP-M, Komolafe MO. A conceptual model for financial advisory standardization: bridging the financial literacy gap in Nigeria. Int J Frontline Res Sci Technol. 2022;1(2):38-52.
Okeke IC, Agu EE, Ejike OG, Ewim CP-M, Komolafe MO. A model for foreign direct investment (FDI) promotion through standardized tax policies in Nigeria. Int J Frontline Res Sci Technol. 2022;1(2):53-66.
Owusu PA, Asumadu-Sarkodie S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016;3(1):1167990.
Oyedokun OO. Green human resource management practices and its effect on the sustainable competitive edge in the Nigerian manufacturing industry (Dangote) [doctoral dissertation]. Dublin Business School; 2019.
Özkan D, Mishra A. Agile project management tools: a brief comparative view. Cybern Inf Technol. 2019;19(4):17-25. doi:10.2478/cait-2019-0033
Pagliaro M. Renewable energy systems: enhanced resilience, lower costs. Energy Technol. 2019;7(11). doi:10.1002/ente.201900791
Pagliaro M, Meneguzzo F. Digital management of solar energy en route to energy self‐sufficiency. Glob Challenges. 2019;3(8). doi:10.1002/gch2.201800105
Pandey A, Sahay K, Tripathi M, Chandra D. Short-term load forecasting of UPPCL using ANN. 2014. doi:10.1109/34084poweri.2014.7117741
Patterson M, Bond R, Mulvenna M, Reid C, McMahon F, McGowan P, et al. Towards an agile user experience virtual assistant and management platform. 2017. doi:10.14236/ewic/hci2017.77
Perez-Santiago A, Ortiz-Dejesus R, Ortiz-Rivera E. HOMER: A valuable tool to facilitate the financing process of photovoltaic systems in Puerto Rico. 2014. doi:10.1109/pvsc.2014.6925192
Rabbi MF, Popp J, Máté D, Kovács S. Energy security and energy transition to achieve carbon neutrality. Energies. 2022;15(21):8126.
Ramelan A, Adriyanto F, Apribowo C, Ibrahim M, Iftadi I, Ajie G. Simulation and techno-economic analysis of on-grid battery energy storage systems in Indonesia. J Electr Electron Inf Commun Technol. 2021;3(1):30. doi:10.20961/jeeict.3.1.50492
Ramos H, Amaral M, Covas D. Pumped-storage solution towards energy efficiency and sustainability: Portugal contribution and real case studies. J Water Resour Prot. 2014;6(12):1099-1111. doi:10.4236/jwarp.2014.612103
Rathore B. Fashion sustainability in the AI era: opportunities and challenges in marketing. EIPRMJ. 2019;8(2):17-24. doi:10.56614/eiprmj.v8i2y19.362
Rolnick D, Donti P, Kaack L, Kochanski K, Lacoste A, Sankaran K, et al. Tackling climate change with machine learning. 2019. doi:10.48550/arxiv.1906.05433
Safaei H, Keith D. How much bulk energy storage is needed to decarbonize electricity? Energy Environ Sci. 2015;8(12):3409-17. doi:10.1039/c5ee01452b
Seyedzadeh S, Rahimian F, Glesk I, Roper M. Machine learning for estimation of building energy consumption and performance: a review. Vis Eng. 2018;6(1). doi:10.1186/s40327-018-0064-7
Shameem M, Kumar R, Kumar C, Chandra B, Khan A. Prioritizing challenges of agile process in distributed software development environment using analytic hierarchy process. J Softw Evol Process. 2018;30(11). doi:10.1002/smr.1979
Shin S, Woo H. Energy consumption forecasting in Korea using machine learning algorithms. Energies. 2022;15(13):4880. doi:10.3390/en15134880
Slama S. Intelligent energy management for off-grid renewable hybrid system using multi-agent approach. IEEE Access. 2020;8:8681-96. doi:10.1109/access.2019.2963584
Srivastava S. Generation of hybrid energy system (solar-wind) supported with battery energy storage. Int J Res Appl Sci Eng Technol. 2022;10(9):1439-46. doi:10.22214/ijraset.2022.46864
Stormi K, Laine T, Korhonen T. Agile performance measurement system development: an answer to the need for adaptability? J Account Organ Change. 2019;15(2):231-56. doi:10.1108/jaoc-09-2017-0076
Sudharshan K, Naveen C, Vishnuram P, K D, Nastasi B. Systematic review on impact of different irradiance forecasting techniques for solar energy prediction. Energies. 2022;15(17):6267. doi:10.3390/en15176267
Tanane F, Laval J, Cheutet V. Towards assessment of information system agility. 2016. doi:10.1109/skima.2016.7916245
Thom-Manuel O. Explicit risk management in agile software projects: its relevance and benefits. Asian J Res Comput Sci. 2022:12-24. doi:10.9734/ajrcos/2022/v14i330340
Varghese A. AI-driven solutions for energy optimization and environmental conservation in digital business environments. Asia Pac J Energy Environ. 2022;9(1):49-60. doi:10.18034/apjee.v9i1.736
Varghese A. AI-driven solutions for energy optimization and environmental conservation in digital business environments. Asia Pac J Energy Environ. 2022;9(1):49-60. doi:10.18034/apjee.v9i1.736
Varghese A. AI-driven solutions for energy optimization and environmental conservation in digital business environments. Asia Pac J Energy Environ. 2022;9(1):49-60. doi:10.18034/apjee.v9i1.736
Vidadili N, Suleymanov E, Bulut C, Mahmudlu C. Transition to renewable energy and sustainable energy development in Azerbaijan. Renew Sustain Energy Rev. 2017;80:1153-61.
Vinuesa R, Azizpour H, Leite I, Balaam M, Dignum V, Domisch S, et al. The role of artificial intelligence in achieving the sustainable development goals. Nat Commun. 2020;11(1). doi:10.1038/s41467-019-14108-y
Wang N, Feng Z, Guo X. Coordinated operation strategy for hydrogen energy storage in the incremental distribution network. Int J Energy Res. 2022;46(15):24158-78. doi:10.1002/er.8723
Xu Y, Ahokangas P, Louis J, Pongrácz É. Electricity market empowered by artificial intelligence: a platform approach. Energies. 2019;12(21):4128. doi:10.3390/en12214128
Xu Y, Ahokangas P, Louis J, Pongrácz É. Electricity market empowered by artificial intelligence: a platform approach. Energies. 2019;12(21):4128. doi:10.3390/en12214128
Xu Y, Ahokangas P, Louis J, Pongrácz É. Electricity market empowered by artificial intelligence: a platform approach. Energies. 2019;12(21):4128. doi:10.3390/en12214128
Xue Y, Zhang C, Jiang F, Wu D, Zhang H, Yang C. Optimal capacity allocation method of integrated energy system considering renewable energy uncertainty. Front Energy Res. 2022;10. doi:10.3389/fenrg.2022.1016756
Yiğitcanlar T, Kankanamge N, Regona M, Maldonado A, Rowan B, Ryu A, et al. Artificial intelligence technologies and related urban planning and development concepts: how are they perceived and utilized in Australia? J Open Innov Technol Mark Complex. 2020;6(4):187. doi:10.3390/joitmc6040187
Zhou H, Liu Q, Yan K, Du Y. Deep learning enhanced solar energy forecasting with AI‐driven IoT. Wirel Commun Mob Comput. 2021;2021(1). doi:10.1155/2021/9249387
Zhou T, Shen J, Ji S, Ren Y, Yan L. Secure and intelligent energy data management scheme for smart IoT devices. Wirel Commun Mob Comput. 2020;2020:1-11. doi:10.1155/2020/8842885
Zhou T, Shen J, Ji S, Ren Y, Yan L. Secure and intelligent energy data management scheme for smart IoT devices. Wirel Commun Mob Comput. 2020;2020:1-11. doi:10.1155/2020/8842885.