Evaluation of Beauveria bassiana and Heterorhabditis bacteriophora as biocontrol agents for Spodoptera frugiperda [J.E. Smith] (Lepidoptera: Noctuidae) and their effect on its biochemical parameters
Keywords:
Entomopathogenic fungi, Nematodes, Armyworms, Protein , Enzyme activitiesAbstract
The fall armyworm, Spodoptera frugiperda [J.E. Smith] (Lepidoptera: Noctuidae), is widely distributed in the world and is a multi-feeding insect that attacks many economic field crops and almost all vegetables, causing significant economic losses. The present study was carried out to evaluate the effects of three Beauveria bassiana fungal isolates, (B1, B2, and B3) and the nematode (Heterorhabditis bacteriophora) in combating third-instar larvae of the S. frugiperda in the laboratory. Five tested concentrations and the deep-leaf approach were applied. In addition, the effect of the three fungal isolates and nematodes on the total protein and activities of some enzymes (transaminases, phenoloxidases, and alkaline phosphatase (ALP)) in the blood lymph of third instar S. frugiperda larvae was studied after treatment with LC50 values of B1 and H. bacteriophora. The results showed that the mortality percentages in B1 were higher compared to B2 and B3. According to LC50 values, B1 was more toxic followed by B2 than B3 (LC50 = 5.52E+07 conidia/ml, 1.26E+08 conidia/ml and 3.38E+09 conidia/ml, respectively). Moreover, the mortality rate was higher in H. bacteriophora than the three fungal isolates. The LC50 of nematodes was 23.67 IJs/ml. Additionally, the time-response efficacy (LT50) of nematodes on S. frugiperda larval mortality was lower compared to that of B. bassiana treatments. It was 0.71 and 9.5 days for H. bacteriophora and B. bassiana (B), respectively at high concentrations for each one. The tested compounds significantly decreased the total protein and GOT, GPT levels. While, phenoloxidase, and ALP were significantly increased with compared to the control group.
References
Abbott WW. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925;18:265-267.
Ali SS, Haron ENS, Ahmed MA, Abas AA, Elshaier ME. Isolation of entomopathogenic fungi and efficacy as a biological control agent on red spider mite, Tetranychus urticae (Koch) (Acari: Tetranychidae). Journal of Plant Protection Research Institute. 2020;3(2):761-770.
Ali M, Allouf N, Ahmad M. First report of entomopathogenic nematode Steinernema affine (Nematoda: Steinernematidae) in Syria and its virulence against Galleria mellonella L. (Lepidoptera: Pyralidae). Egyptian Journal of Biological Pest Control. 2022;32:101-114. https://doi.org/10.1186/ s41938-022-00602-x.
Andaló V, Santos V, Moreira GF, Moreira CC, Moino Junior A. Evaluation of entomopathogenic nematodes under laboratory and greenhouse conditions for the control of Spodoptera frugiperda. Ciência Rural. 2010;40(9):1862-1869. https://doi.org/10.1590/S0103-84782010005000151.
Amin TR. Biochemical and physiological studies of some insect growth regulators on the cotton leaf worm, Spodoptera littoralis (Boisd.). Ph.D. thesis, Faculty of science, Cairo Univ, 1998, 164p.
Berger J, Jurèová M. Phagocytosis of insect haemocytes as a new alternative model. Journal of Applied Biomedicine. 2012;10:35-40. Doi: https://doi.org/ 10.2478/v10136-012-0003-1.
Becker G, Sugumaran M, Cooper EL (Eds.). Phylogenetic perspectives on the vertebrate immune system (Vol. 484). Springer Science & Business Media. 2001;404:169-183.
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal. Biochem. I976;72:248-254.
Çağlayan A, Atay T, Kepenekci İ. Efficacy of some native Entomopathogenic nematodes against the alfalfa weevil, Hypera postica (Gyllenhal) (Coleoptera: Curculionidae), and the lucerne beetle, Gonioctena fornicate (Brüggemann) (Coleoptera: Chrysomelidae), adults under laboratory conditions. Egyptian Journal of Biological Pest Control. 2021;31:89-95. https://doi.org/10. 1186/s41938-021-00436-z
Garcia LC, Raetano CG, Leite LG. Application technology for the entomopathogenic nematodes Heterorhabditis indica and Steinernema sp. (Rhabditida: Heterorhabditidae and Steinernematidae) to control Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) in corn. Neotropical Entomology. 2008;37:305-311. https://doi.org/10.1590/S1519-566X2008000300010
Chowański S, Kudlewska M, Marciniak P, Rosiński G. Synthetic Insecticides- is There an Alternative? Polish Journal of Environmental Studies. 2014;23(2):291-302.
Cruz-Avalos AM, Bivián-Hernández MA, Ibarra JE, Rincón-Castro MCD. High Virulence of Mexican Entomopathogenic Fungi Against Fall Armyworm, (Lepidoptera: Noctuidae). J Econ Entomol. 2019;112:99–107.
Darsouei R, Karimi J, Hosseini M, Ghadamyari M. Immune defense components of Spodoptera exigua larvae against entomopathogenic nematodes and symbiotic bacteria. Biocontrol Science and Technology. 2017;27(7):867-885. DOI: https://doi.org/10.1080/ 09583157.2017.1350632
El Husseini MM. Effect of the fungus, Beauveria bassiana (Balsamo) Vuillemin, on the beet armyworm, Spodoptera exigua (Hübner) larvae (Lepidoptera: Noctuidae), under laboratory and open field conditions. Egyptian Journal of Biological Pest Control. 2019;29(1):52-56. https://doi.org/10.1186/s41938-019-0158-0
Finney DJ. Probit analysis: A statistical treatment of the sigmoid response curve; Cambridge university press. London, New York: Melbourne, 1971, p333.
Fagan WF, Siemann E, Mitter C, Denno RF, Huberty AF, Woods HA, et al. Nitrogen in insects: implications for trophic complexity and species diversification. The American Naturalist. 2002;160(6):784-802. https://doi.org/10.1086/343879
FAO. Integrated management of the fall armyworm on maize a guide for farmer field schools in Africa, 2018. http://www.fao.org/faostat/en/.
El-Defrawi ME, Toppozada A, Mansour N, Zeid M. Toxicological studies on the Egyptian cotton leafworm, Prodenia litura I. Susceptibility of different larval instars to insecticides. J. Econ. Entomol. 1964;57:591-593.
Feng MG, Johnson JB, Kish LP. Survey of entomopathogenic fungi naturally infecting cereal aphids in irrigated cereal crops in southwestern Idaho. Environ Entomol. 1990;19:1534–1542.
Fergani YA, Refaei EAE. Pathogenicity induced by indigenous Beauveria bassiana isolate in different life stages of the cotton leaf worm, Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) under laboratory conditions. Egyptian Journal of Biological Pest Control. 2021;31:1-7. https://doi.org/10.1186/s41938-021-00411-8
Gabarty A, El-Sonbaty SM, Ibrahim AA. Synergistic effect of gamma radiation and entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae on the humoral immune enzyme response in cotton leaf worm Spodoptera littolaris (Boisd). Egypt. Acad. J. Biol. Sci. 2013;6(3):1-10. DOI: 10.21608/eajbsa.2013.13221
Ghoneim K, Tanani M, Hassan HA, Bakr NA. Comparative Efficiency of The Entomopathogenic Nematodes, Steinernema carpocapsae and Heterorhabditis bacteriophora, against the Main Body Metabolites of Agrotis ipsilon (Lepidoptera: Noctuidae). Egyptian Academic Journal of Biological Sciences, C Physiology & Molecular Biology. 2022;14(2):57-66. Doi.10.21608/EAJBSC.2022.260471
Ghoneim K, Hassan HA, Tanani M, Bakr NA. Enzymatic Disturbance in Larvae of The Black Cut Worm, Agrotis ipsilon (Lepidoptera: Noctuidae), by Infection with The Entomopathogenic Nematodes, Steinernema carpocapsae and Heterorhabditis bacteriophora. Egyptian Academic Journal of Biological Sciences, C Physiology & Molecular Biology. 2023;15(1):121-142. DOI: 10.21608/EAJBSC.2023.285633
Gillespie JP, Burnett C, Charnley AK. The immune response of the desert locust Schistocerca gregaria during mycosis of the entomopathogenic fungus, Metarhizium anisopliae var acridum. Journal of Insect Physiology. 2000;46(4):429-437. https://doi.org/10.1016/S0022-1910(99)00128-6
Hassan FR, Abdullah SK, Assaf LH. Pathogenicity of the entomopathogenic fungus, Beauveria bassiana (Bals.) Vuill. endophytic and a soil isolate against the squash beetle, Epilachna chrysomelina (F.) (Coleoptera: Coccinellidae). Egypt. J. Biol. Pest Control. 2019;29:1–7.
Hu R, Bai P, Liu B, Yu J. On the virulence of two Beauveria bassiana strains against the fall webworm, Hyphantria cunea (Durry) (Lepidoptera: Erebidae), larvae and their biological properties in relation to different abiotic factors. Egyptian Journal of Biological Pest Control. 2021;31:1-7. https://doi.org/10.1186/s41938-021-00452-z
Irving P, Ubeda J, Doucet D, Troxler L, Lagueux M, Zachary D, et al. New insights into Drosophila larval haemocyte functions through genome wide analysis. Cell Microbiology. 2005;7:335-350. doi:10.1111/j.1462-5822. 2004.00462.x.
Ishaaya I. Observation on the phenoloxidase system In the armored scale Aonidiella aurantii and Chrysomphalus aonidum. Comp. Biochem. Physiol. 1971;39 B:935-943.
Ismail SM. Field persistence of certain new insecticides and their efficacy against black cutworm, Agrotis ipsilon (Hufnagel). Bulletin of the National Research Centre. 2021;45:17-24. https://doi.org/10.1186/s42269-020-00481-y
Javed K, Javed H, Mukhtar T, Qiu D. Efficacy of Beauveria bassiana and Verticillium lecanii for the management of whitefly and aphid. Pakistan Journal of Agricultural Sciences. 2019;56(3):669-674.
Kaya HK, Aguillera M, Alumai A, Choo HY, De la Torre M, Fodor A, et al. Status of entomopathogenic nematodes and their symbiotic bacteria from selected countries or regions of the world. Biological control. 2006;38:134-155.
Koppenhöfer HS. Bacterial Symbionts of Steinernema and Heterorhabditis. Nematology Monographs & Perspectives. 2007;5:735-808.
Kunc M, Badrul A, Pavel H, Ulrich T. Monitoring the effect of pathogenic nematodes on locomotion of Drosophila larvae. Fly. 2017;3:1–10. DOI: 10.1080/19336934.2017.1297350
Kumar D, Kumari P, Kamboj R, Kumar A, Banakar P, Kumar V. Entomopathogenic nematodes as potential and effective biocontrol agents against cutworms, Agrotis spp.: present and future scenario. Egyptian Journal of Biological Pest Control. 2022;32:42-51. https://doi.org/10.1186/s41938-022- 00543-5
Lu D, Macchietto M, Chang D, Barros MM, Baldwin J, Mortazavi A, et al. Activated entomopathogenic nematode infective juveniles release lethal venom proteins. PLoS Pathogen. 2017;13:e1006302. DOI: 10.1371/1006302.
Ozawa S, Maehara N, Takatsuka J, Aikawa T, Nakamura K. Insecticidal effect of the entomopathogenic nematode Heterorhabditis megidis (Nematoda: Heterorhabditidae) baited from the soil on the larvae of Monochamus alternatus (Coleoptera: Cerambycidae). Applied Entomology and Zoology. 2023;58(2):197-203. https://doi.org/10.1007/s13355-023-00820-1
Peçen A, Kepenekci I. Efficacy of entomopathogenic nematode isolates from Turkey against wheat stink bug, Aelia rostrata Boheman (Hemiptera: Pentatomidae) adults under laboratory conditions. Egyptian Journal of Biological Pest Control. 2022;32:91-97. https://doi.org/10. 1186/s41938-022-00590-y
Perez LS, Florido JEB, Navarro SR, Mayagoitia JFC, Lopez MAR. Enzymes of Entomopathogenic Fungi Advances and Insights. Advances in Enzyme Research. 2014;2:65-76.
Powell MEA, Smith MJH. The determination of serum acid and alkaline phosphatase activity with 4- aminoantipyrine. J. Clin. Pathol. 1954;7:245-248.
Rajula J, Pittarate S, Suwannarach N, Kumla J, Ptaszynska AA, Thungrabeab M, et al. Evaluation of native entomopathogenic fungi for the control of fall armyworm (Spodoptera frugiperda) in Thailand: A sustainable way for eco-friendly agriculture. Journal of Fungi. 2021;7(12):1073-1086. https://doi.org/10.3390/jof 7121073.
Ramanujam B, Poornesha B, Shylesha AN. Effect of entomopathogenic fungi against invasive pest Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in maize. Egyptian Journal of Biological Pest Control. 2020;30:100-105. https://doi.org/10.1186/s41938-020-00291-4
Reitman S, Frankel S. Colourimetric method for aspartate and alanine transaminases. Amer. J. Clin. Pathol. 1957;28:56.
Sandhu SS, Sharma AK, Beniwal V, Goel G, Batra P, Kumar A, et al. Myco‐biocontrol of insect pests: factors involved mechanism, and regulation. Journal of Pathogens. 2012;1:10. https://doi.org/10.1155/2012/126819
Sewify GH, Moursy EB. Impact of the entomopathogenic fungus, Verticillium lecanii on lipids and free fatty acids of cabbage aphid, Brevicoryne brassicae. Bulleten Entomology Society of Egypt. 1993;71:153-162.
Sisay B, Simiyu J, Mendesil E, Likhayo P, Ayalew G, Mohamed S, et al. Fall Armyworm, Spodoptera frugiperda Infestations in East Africa: Assessment of Damage and Parasitism. Insects. 2019;10(7):195-204. https://doi.org/10.3390/insects10070195
St-leger RJ, Cooper RM, Charnley AK. Production of cuticle-degrading enzymes by the entomopathogen Metarhizium anisopliae during infection of cuticles from Calliphora vomitoria and Manduca sexta. Microbiology. 1987;133(5):1371-1382. https://doi.org/10.1099/00221287-133-5-1371
Tiryaki D, Temur C. The fate of pesticide in the environment. Journal of Biological and Environmental Sciences. 2010;4(10):29-32.
Vattikonda SR, Sangam SR. Effect of forskolin on the growth and differentiation of the ovary of Papilio demoleus L. (Lepidoptera: Papilionidae). International Research Journal of Environmental Science. 2017;6:13-17.
Yasin M, Wakil W, Ghazanfar MU, Qayyum MA, Tahir M, Bedford GO. Virulence of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae against red palm weevil, Rhynchophorus ferrugineus (Olivier). Entomol. Res. 2019;49:3-12.
Zibaee A, Bandani AR, Talaei-Hassanlouei R, Malagoli D. Cellular immune reactions of the sunn pest, Eurygaster integriceps, to the entomopathogenic fungus, Beauveria bassiana and its secondary metabolites. Journal of Insect Science. 2011;11:1-16. doi: 10.1673/031.011.13801.
Zimmermann G. Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology. 2007;17(6):553–596. https://doi.org/10.1080/09583150701309006
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Entesar N Haron, Nevien M Gaber, Soheir F. Abd EL-Rahman

This work is licensed under a Creative Commons Attribution 4.0 International License.