Comparative effectiveness between entomopathogens and conventional insecticide against Spodoptera frugiperda larvae and accompanying alteration in some enzymatic activities


  • Aml B. Abou-Elkassem Department of Vegetables Crop Pests Research, Plant Protection Research Institute, Agricultural Research Center, Egypt
  • Olyme M. F. Department of Vegetables Crop Pests Research, Plant Protection Research Institute, Agricultural Research Center, Egypt
  • Abdel-Aziz A. A. Department of Crop Insect Pests Research, Plant Protection Research Institute, Agricultural Research Center, Egypt
  • Huda I. Abdel-Aliem Department of Biological Control Research, Plant Protection Research Institute, Agricultural Research Center, Egypt


entomopathogens, insecticide, fall armyworm, enzymatic activities


Background: The Spodoptera frugiperda (J. E. Smith) fall armyworm (Lepidoptera: Noctuidae) is a dangerous insect pest of an excessive number of crops., with larvae attacking the plants at all growth stages.

Materials: Protecto (Bacillus thuringiensis), Biossiana (Beauveria bassiana) and BioMeta (Metarhizium anisopliae), compared to abamectin (traditional insecticides), were assessed against S. Frugiperda in maize field. The enzymatic activities of the larvae were determined 48 hours after exposure to the tested pesticides.

Results: Under laboratory condition, the entomopathogenic bacteria was more effective against fall armyworm (2nd instar) than entomopathogenic fungi, with total mortalities of 96.67 and 93.33% due to Biometa and Biossiana, respectively. Opposite results were obtained in case of 4thinstar larvae, with total mortalities of 53.33 and 50% due to Biossiana and Biometa, respectively. In maize fields, abamectin was the most potent compound in reducing fall armyworm larval population (94.48% reduction) three days post-treatments, followed by Biometa (78.19% reduction), while the least one was Protecto (43.53% reduction). Five and seven days post treatments, the highest reductions (94.66 and 94.84%, respectively) were recorded in abamectin treatment, followed by Biometa (79.38% and 80.56% reduction, respectively). On the other hand, 10 days after treatments, Biossiana treatment induced the highest reduction (77.90%), followed by abamectin (75.41%). Overall average larval reductions, proved that abamectin induced the highest value (89.87%), followed by Biossiana (59.47%) and Biometa (57.91%) while Protecto resulted in the lowest reduction (32.56%) The correspondent total protein ratios were 0.68, 0.06, 0.90, 0.69. In addition, the highest lipid peroxide activity was highest in S. frugiperda larvae treated with Protecto (724.40) and abamectin (376.90), but lowest in case of treating the larvae by Biometa (179.52) and Biossiana (158.22). Protecto, Biometa and abamectin applications induced higher acetylcholine esterase activity in the 4th instar larvae compared with larvae treated with Biossiana. The lowest activity of chitinase was detected in case of Biossiana treatment. The chitinase activity was 15.59 in abamectin, and 20.78 in Protecto treatments.


Abd El-Salam AM, Mabrouk MA, EL-Sserafy H, Neven MF. Impact of some bioagent and insect growth regulator to some biochemical aspects of the cotton leaf worm, Spodoptera littoralis (Boisd). Egyptian Journal of Agricultural Research. 2018;96(4):1361-1368.

Abd-El Wahed F, Ahmed M, Abdel-Aal AE, Abdel-Aziz MM. The effect of certain biocontrol agents on some biological, biochemical, and histological aspects of the cotton leafworm Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Egyptian Journal of Agricultural Research. 2011;89(2):431-444. DOI: 10.21608/ejar.2011.175625.

Abrahams P, Bateman M, Beale T, Clottey V, Cock M, Colmenarez Y, et al. Fall armyworm: Impacts and implications for Africa. Commonwealth Agricultural Bureaux International (CABI), Wallingford, 2017.

Ali S, Huang Z, Ren SX. Production and extraction of extracellular lipase from the entomopathogenic fungus Isaria fumosoroseus (Cordycipitaceae: Hypocreales). Biocont. Sci. Technol. 2009;19:81-89.

Ali EA, Ibrahim GA. Biological control for some insects by using plant growth promoting bacteria in laboratory and field conditions. Journal of Plant Protection and Pathology, 2023, 153-164.

Arakane Y, Muthukrishnan S. Insect chitinase and chitinase-like proteins. Cell Mol. Life Sci. 2010;67(2):201-16.

Blanco CA, Chiaravalle W, Dalla-Rizza M, Farias JR, García Degano MF, Gastaminza G, et al. Current situation of pests targeted by Bt crops in Latin America. Curr. Opin. Insect Sci. 2016;15:131-138.

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal. Biochem. I976;72:248-254.

Dahi HF, Salem SAR, Gamil WE, Mohamed HO. Heat requirements for the fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) as a new invasive pest in Egypt. Egypt Acad. J. Biolog. Sci. 2020;13(4):73–85.

Day R, Abrahams P, Bateman M, Beale T, Clottey V, Cock M, et al. Fall armyworm impacts and implications for Africa. Outlooks Pest Manag. 2017;28(5):196-201(6).

Dhawan M, Joshi N. Enzymatic comparison and mortality of Beauveria bassiana against cabbage caterpillar, Pieris brassicae LINN. Braz. J. Microbiol. 2017;48(3):522-529.

El-Sheikh TAA. Biological, biochemical and histological effects of spinosad, Bacillus thuringiensis var. kurstaki and cypermethrin on the cotton leafworm, Spodoptera littoralis (Boisd.). Egyptian Academic Journal of Biological Sciences. C. Physiology & Molecular Biology. 2012;4(1):113-124.

Gamil WE. Fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) biological aspects as a new alien invasive pest in Upper Egypt. Egypt. Acad J Biolog Sci (A. Entomology). 2020;13(3):189-196.

Guo J, Wu S, Zhang F, Huang C, He K, Babendreier D et al. Prospects for microbial control of the fall armyworm Spodoptera frugiperda: a review. Biocontrol. 2020;65:647–662.

Hailu G, Niassy S, Bässler T, Ochatum N, Studer C, Salifu D, et al. Could fall armyworm, Spodoptera frugiperda (J. E. Smith) invasion in Africa contribute to the displacement of cereal stem borers in maize and sorghum cropping systems. Inter. J. Tropical Insect Sci. 2021;41:1753-1762.

Hamama HM, Hussein MA, Fahmy AR, Fergani YA, Mabrouk AM, Farghaley SF. Toxicological and biochemical studies on use of neonicotinoids and bioinsecticides against the Egyptian cotton leafworm, Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control. 2015;25(3):525-533.

Harrison RD, Thierfelder C, Baudron F, Chinwada P, Midega C, Schaffner U, et al. Agro-ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management: Providing low-cost, smallholder friendly solutions to an invasive pest. J. Environ. Manage. 2019;243:318-330.

Henderson CF, Tilton EW. Tests with acaricides against the brown wheat mite. J. Econ. Entomology. 1955;48:157-161.

Ishaaya I, Casida JE. Dietary TH 6040 alters composition and enzyme activity of housefly larval cuticle. Pesticide Biochemistry and Physiology. 1974;4:484-490.

Kassie M, Wossen T, Groote HD, Tefera T, Sevgan S, Balew S. Economic impacts of fall armyworm and its management strategies: Evidence from Southern Ethiopia. Eur. Rev. Agric. Econ. 2020;47(4):1473-1501.

Liu XY, Wang SS, Zhong F, Zhou M, Jiang XY, Cheng YS. Chitinase (CHI) of Spodoptera frugiperda affects molting development by regulating the metabolism of chitin and trehalose. Front. Physiology. 2022;13:1034926.

Massochin NPL, Carolina DDN, Mariana FL. The toxicity and histopathology of Bacillus thuringiensis Cry1Ba toxin to Spodoptera frugiperda (Lepidoptera, Noctuidae). Microorganisms in Industry and Environment, 2010, p137-140.

Merzendorfer H, Zimoch L. Chitin metabolism in insects: structure, function, and regulation of chitin synthases and chitinases. Journal of Experimental Biology. 2003;206(24):4393-4412.

Mohamed HO, El-Heneidy AH, Dahi HF, Awad AA. First record of the fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) on sorghum plants, a new invasive pest in Upper Egypt, Egypt Acad. J. Biology Sci. (A. Entomol.). 2022;15(1):15–23.

Montezano DG. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 2018;26:286-300.

Mwamburi LA. Endophytic fungi, Beauveria bassiana and Metarhizium anisopliae, confer control of the fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), in two tomato varieties. Egypt J. Biol. Pest Control. 2021;31:7.

Qiao X, Liu B, Liu CH, Xi Y, Liu WX, Wang WK, et al. Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Integrative Agriculture. 2021;20:646-663.

Ramos Y, Taibo AD, Jiménez JA. Endophytic establishment of Beauveria bassiana and Metarhizium anisopliae in maize plants and its effect against Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) larvae. Egypt J. Biol. Pest. Control. 2020;30:20.

Rani L, Thapa K, Kanojia N, Sharma N, Singh S, Grewal AS, et al. An extensive review on the consequences of chemical pesticides on human health and environment. J. Cleaner Prod. 2021;283:124-657.

Ricardo AP, Rogério FP, Silva LMF. Effectiveness of Bacillus thuringiensis strains against Spodoptera frugiperda (lepidoptera: Noctuidae). Brazilian Journal of Microbiology. 2000;31:165-167.

Sarmento RA, Aguiar RWS, Aguiar RASS, Vieira SMJ, Oliveira HG, Holtz AM. Biology review, occurrence, and control of Spodoptera frugiperda (Lepidoptera, Noctuidae) in corn in Brazil. Bioscience Journal (Brazil). 2002;18(2):41-48. D=BR2003001974.

SAS Institute. SAS/STAT User`s Guide, Ver. 6.03. SAS Institute Inc., Cary, North Carolina, 1988.

Satoh K. Clinica Chimica Acta. 1978;90:37.

Satoh H, Ohishi W, Yagi K. Anal. Biochem. 1979;95:351.

Shah PA, Pell JK. Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 2003;61:413-423.

Shahzad MA, Irfan M, Wahab AA, Zafar F, Abdulrehman. Toxicity of entomopathogenic fungi against Spodoptera frugiperda larvae under laboratory conditions. J. Agric. Sci. Food Technol. 2021;7(3):355-358.

Silva WOB, Santi L, Schrank A, Vainstein MH. Metarhizium anisopliae lipolytic activity plays a pivotal role in Rhipicephalus (Boophilus microplus) infection. Fungal Biol. 2010;114:10-15.

Simpson DR, Bulland DL, Linquist DA. A semimicro technique for estimation of cholinesterase activity in boll weevils. Ann. Ent. Soc. Amer. 1964;57:367-371.

Tambo JA, Day RK, Lamontagne-Godwin J, Silvestri S, Beseh PK, Oppong-Mensah B, et al. Tackling fall armyworm (Spodoptera frugiperda) outbreak in Africa: an analysis of farmers’ control actions. Int. J. Pest Manage. 2020;66:298-310.

Timilsena BP, Niassy S, Kimathi E, Abdel-Rahman EM, Seidl-Adams I, Wamalwa M, et al. Potential distribution of fall armyworm in Africa and beyond, considering climate change and irrigation patterns. Sci. Rep. 2022;12:539.

Vici AC, Da Cruz AF, Facchini FDA, De Carvalho CC, Pereira MG, Fonseca-Maldonado R, et al. Beauveria bassiana lipase a expressed in Komagataella (Pichia) pastoris with potential for biodiesel catalysis. Front Microbiol. 2015;6:10-83.

Wan J, Huang C, Li CY, Zhou HX, Ren YL, Li ZY, et al. Fall armyworm invasion heightens pesticide expenditure among Chinese smallholder farmers. J. Environ. Manage. 2021;282:111-949.




How to Cite

A. B. A.-. Elkassem, O. M. . F., A.-A. A. . A., and H. I. . Abdel-Aliem, “Comparative effectiveness between entomopathogens and conventional insecticide against Spodoptera frugiperda larvae and accompanying alteration in some enzymatic activities”, J. Appl. Entomol., vol. 4, no. 2, pp. 15–23, Apr. 2024.