Role of cyanobacteria in germination and growth of paddy seedlings

Authors

  • Priya Yadav Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
  • Rahul Prasad Singh Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
  • Rajan Kumar Gupta Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India https://orcid.org/0000-0001-8625-6936

Keywords:

cyanobacteria, rice, seed germination, phosphate solubilization, indole acetic acid, exopolysaccharide

Abstract

Cyanobacteria are first oxygen evolving prokaryotic photosynthetic organisms used as biofertilizer in several crop fields and play a crucial role to increase crop yields. They were isolated and screened for several plant growth promoting activities like indole acetic acid (IAA) production, phosphate solubilization, exopolysaccharide (EPS) production and their impact on seed germination, vigour index and root/shoot ratio (R/S ratio) of paddy plant. Isolated cyanobacteria Nostoc calcicola, N. punctiforme, N. linckia and Anabaena oryzae was identified using standard monographs. Paddy seeds were treated with different cyanofilterats in which N. punctiforme showed highest 97.33% seed germination while N. calcicola showed 90.66% and control (soaked in DDW) showed only 88% seed germination. Maximum vigour index was showed by N. linkia i.e., 988.26. IAA production was found 0.88 µg/ml in case of N. calcicolawhile phosphate solubilization 94.3 µm in diameter was maximum in N. punctiforme followed by 75 µm, 47.9 µm, 30.7µm in N. calcicola, N. linckia and A. Oryzae, respectively. EPS production was highest in A. oryzae i.e., 0.205 µl/ml and minimum in N. linckia which is 0.108 µl/ml. The data of our study showed that inoculation of these cyanobacterial species to paddy seedlings appear a potential candidate to promote seed germination, vigour index and R/S ratio of paddy plant. These results encourage use of A. oryzae, N. calcicola, N. linckia and N. punctiforme as biofertilizer for rice crop to enhancing growth without using harmful chemical fertilizers.

Downloads

Download data is not yet available.

References

Keswani C, De Corato U, Sansinenea E, Adl SM, et al. Towards a new horizon of sustainable agriculture with microorganisms useful in agriculture. Rhizosphere, 2021; 17:100293. doi: 10.1016/j.rhisph.2020.100293

Balestrini R, Chitarra W, Fotopoulos V, Ruocco M. Potential role of beneficial soil microorganisms in plant tolerance to abiotic stress factors. In Soil bio comm ecoresi, 2017, 191-207.

Mishra A, Arshi A, Mishra SP, Bala M. Microbe-based biopesticide formulation: a tool for crop protection and sustainable agriculture development. In Microbial Technology for the Welfare of Society, 2019, 125-145.

Patil HJ, Solanki MK. Microbial inoculant: modern era of fertilizers and pesticides. In Microbial inoculants in sustainable agricultural productivity, 2016, 319-343.

Karthikeyan N, Prasanna R, Nain L, Kaushik BD. Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Eur J Soil Biol, 2007; 43:23-30. doi:10.1016/j.ejsobi.2006.11.001

Senaratna T, Touchell D, Bunn E, Dixon K. Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul, 2000; 30(2):157-161.

Barriuso J, Solano BR, Gutiérrez Mañero FJ. Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology, 2008; 98(6):666-672. doi:10.1094/PHYTO-98-6-0666

Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria. Annu Rev Microbiol, 2009; 63(1):541-556.

Garlapati D, Chandrasekaran M, Devanesan A, Mathimani T, Pugazhendhi A. Role of cyanobacteria in agricultural and industrial sectors: an outlook on economically important byproducts. Appl Microbiol Biotechnol, 2019; 103(12):4709-4721. doi:10.1007/s00253-019-09811-1

Pathak J, Maurya PK, Singh SP, Hader DP, Sinha RP. Cyanobacterial farming for environment friendly sustainable agriculture practices: innovations and perspectives. Front Environ Sci, 2018, 6-7. doi:10.3389/fenvs.2018.00007

Joshi H, Shourie A, Singh A. Cyanobacteria as a source of biofertilizers for sustainable agriculture. In Advances in Cyanobacterial Biology, 2020, 385-396. doi:10.1016/B978-0-12-819311-2.00025-5

Singh JS, Kumar A, Rai AN, Singh DP. Cyanobacteria: a precious bioresource in agriculture, ecosystem, and environmental sustainability. Front Microbiol, 2016; 7:529. doi:10.3389/fmicb.2020.548410

Stanier RY, Kunisawa R, Mandel MCBG, Cohen-Bazire G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev, 1971; 35(2):171-205.

Shariatmadari Z, Riahi H, Shokravi S. A taxonomic study on soil taxa of Anabaena Bory ex Bornet et Flahault (Nostocaceae) in Iran, 2011.

Desikachary TV. ICAR monograph on algae. India Council Agricultural Research, New.

Bric JM, Bostock RM, Silverstone SE. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol, 1991; 57(2):535-538. doi:10.1128/aem.57.2.535-538.1991

Premono ME, Moawad AM, Vlek PLG. Effect of phosphate-solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere, 1996, (No. REP-12113. CIMMYT.).

Tamaru Y, Takani Y, Yoshida T, Sakamoto T. Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. App Environ Microbiol, 2005; 71(11):7327-7333. doi:10.1128/AEM.71.11.7327-7333.2005

Delattre C, Pierre G, Laroche C, Michaud P. Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv, 2016; 34(7):1159-1179. doi:10.1016/j.biotechadv.2016.08.001

Anand M, Baidyanath K, Dina N. Cyanobacterial consortium in the improvement of maize crop. Int J Curr Microbiol App Sci, 2015; 4(3):264-274.

De PK. The role of blue-green algae in nitrogen fixation in rice-fields. Proc Roy Soc London, 1939; 127(846):121-139. https://doi.org/10.1098/rspb.1939.0014

Manoj Kumar, Baidyanath K, Anand M. Cyanobacterial consortium in the improvement of wheat crop. Natural Sci, 2013; 16(16):1-9.

Mahmood Khavar K, Özcan S. Effect of Indole-3-butyric acid on in vitro root development in Lentil (Lens culinaris Medik). Turk J Bot, 2002; 26:109-111. https://journals.tubitak.gov.tr/botany

Mobli M, Baninasab B. Effect of indolebutyric acid on root regeneration and seedling survival after transplanting of three Pistacia species. J. Fruit Ornam. Plant Res, 2009; 17(1):5-13.

Simpson DG. Auxin stimulates lateral root formation of container-grown interior Douglas-fir seedlings. Can J For Res, 1986; 16(5):1135-1139. doi:10.1139/x86-199

Obana S, Miyamoto K, Morita S, Ohmori M, Inubushi K. Effect of Nostoc sp. on soil characteristics, plant growth and nutrient uptake. J Appl Phycol, 2007; 19(6):641-646. doi:10.1007/s10811-007-9193-4

Katoh H, Furukawa J, Tomita-Yokotani K, Nishi Y. Isolation and purification of an axenic diazotrophic drought-tolerant cyanobacterium, Nostoc commune, from natural cyanobacterial crusts and its utilization for field research on soils polluted with radioisotopes. Biochim Biophys Acta, 2012; 1817(8):1499-1505. doi:10.1016/j.bbabio.2012.02.039

Foth HD. Fundamentals of Soil Science, 8th ed. John Wiley, New York, 1990.

Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell, 2001; 13(4):843-852. doi:10.1105/tpc.13.4.843

Boopathi T, Balamurugan V, Gopinath S, Sundararaman M. Characterization of IAA production by the mangrove cyanobacterium Phormidium sp. MI405019 and its influence on tobacco seed germination and organogenesis. J Plant Growth, 2013; 32(4):758-766. doi:10.1007/s00344-013-9342-8

Overvoorde P, Fukaki H, Beeckman T. Auxin control of root development. Cold Spring Harb Perspect Biol, 2010; 2(6):a001537.

Péret B, De Rybel B, Casimiro I, Benková E, Swarup R, Laplaze L, et al. Arabidopsis lateral root development: an emerging story. Trends Plant Sci, 2009; 14(7):399-408. doi:10.1016/j.tplants.2009.05.002

Misra S, Kaushik BD. Growth promoting substances of cyanobacteria II. Detection of amino acids, sugars and auxins. In Proc Indian Sci Acad B, 1989; 55:499-504.

Hussain A, Krischke M, Roitsch T, Hasnain S. Rapid determination of cytokinins and auxin in cyanobacteria. Curr Microbiol, 2010; 61(5):361-369. doi:10.1007/s00284-010-9620-7

Hussain A, Hasnain S. Comparative assessment of the efficacy of bacterial and cyanobacterial phytohormones in plant tissue culture. World J Microbiol Biotechnol, 2012; 28(4):1459-1466. doi:10.1007/s11274-011-0947-4

Mazhar S, Cohen JD, Hasnain S. Auxin producing non‐heterocystous Cyanobacteria and their impact on the growth and endogenous auxin homeostasis of wheat. J Basic Microbiol, 2013; 53(12):996-1003. doi:10.1002/jobm.201100563

Zarezadeh S, Riahi H, Shariatmadari Z, Sonboli A. Effects of cyanobacterial suspensions as bio-fertilizers on growth factors and the essential oil composition of chamomile, Matricaria chamomilla L. J Appl Phycol, 2020; 32(2):1231-1241. doi:10.1007/s10811-019-02028-9

Joshi H, Shourie A, Singh A. Cyanobacteria as a source of biofertilizers for sustainable agriculture. In Advances in Cyanobacterial Biology, 2020, 385-396. doi:10.1016/B978-0-12-819311-2.00025-5.

Downloads

Published

2022-08-17

How to Cite

[1]
P. . Yadav, R. P. Singh, and R. K. Gupta, “Role of cyanobacteria in germination and growth of paddy seedlings”, Int. J. Phytol. Res., vol. 2, no. 3, pp. 11–18, Aug. 2022.

Issue

Section

Articles