

Potential of molecular marker techniques to identify the susceptibility of some Egyptian cotton varieties to bollworms and whitefly infestation

Abd El-Salam A. Farag^{1*}, Lina H. E. Saad¹ and Hassan A. Mesbah²

¹ Department of Cotton Pesticides Evolution, Plant Protection Research Institute, Agriculture Research Centre, 12619 Giza, Egypt

² Department of Agricultural Botany, Genetics Unit, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt

*Corresponding author: Abd El-Salam A. Farag

Received 7 Nov 2025; Accepted 18 Dec 2025; Published 5 Jan 2026

DOI: <https://doi.org/10.64171/JAE.6.1.01-08>

Abstract

The current investigation was conducted to study the response of six cotton varieties Giza 45, Giza 87, Giza 92, Giza 94, Giza 96 and Giza 97 to infestation of the *Pectinophora gossypiella* (Saunders), *Earias insulana* and *Bemisia tabaci*, the genomic DNA extraction and purification were studied under field conditions at the experimental farm of Sakha Agricultural Research Station, Kafr El-Sheikh Governorate, through 2024 and 2025. Therefore, results showed that, Giza 94 variety was the most susceptibility to infested by *P. gossypiella*, *E. insulana* and *B. tabaci*, while Giza 97 variety was the opposite any the most resistant for the same pests and recorded the number during the two seasons. While, the other varieties of infections are mean. Results showed that the significant differences between Giza 94 and each of the other cotton varieties. Present study can be helpful in selecting resistant varieties in the development of IPM strategies against bollworms and whitefly for good quality production of cotton. Also, this study used ten SCoT primers to generate 130 DNA bands, averaging 13 per primer, with 37 polymorphic bands (41.16% polymorphism). Primers SCoT-1 and SCoT-9 produced the most bands, while SCoT-4 showed the lowest polymorphism, highlighting useful variations for cotton DNA identification.

Keywords: Cotton varieties, *Pectinophora gossypiella*, *Earias insulana*, *Bemisia tabaci*, Genomic DNA, SCoT markers

Introduction

Egyptian cotton, *Gossypium barbadense* L., has been known as an exporter of high-quality cotton and one of the important crops of the all over the world, mainly in Egypt (Abu Hatab, 2009) [2]. It is the most abundant natural fiber crop with over 25 million tons produced annually. Cotton production, consumption, and trade are the most successful works in the world (Dochia *et al.*, 2012) [9]. Cotton plays an important role as a major source of revenue (Jody Campiche *et al.*, 2016) [20]. According to General Organization of Export and Import Control (GOEIC), Egypt is one of the most important countries for textiles industry of yarns, fabrics, and ready-made garments in the Middle East. GOEIC also reported that 30% of the local employments are working in textiles and Ready-Made Garments (RMG) sector (GAFI, 2014) [11]. From the beginning of seedling emergence until harvesting plants are exposed to many piercing sucking and chewing insect pests (Abro *et al.*, 2004) [1]. The spiny and pink bollworm (Gelechiidae: Lepidoptera) are among the most important insect pests that limit the production and quality of the cotton crop, due to great economic losses and damages they cause, through infesting and damaging the flower buds and preventing this from opening, as well as the dropping of the almon and damage to the cotton fluff, which leads to a significant decrease in the quality and quantity of the cotton yield production (Chaudhry *et al.*, 1999) [8]. The sweet potato whitefly, *Bemisia tabaci* Genn.

(Homoptera: Aleyrodidae), which has become one of the most intractable and damaging pests of economic crops, vegetables and ornamentals world-wide (Perring, 2001; Bayhan *et al.*, 2006) [28]. The adults and nymphs damage the infested plants either directly by sucking the phloem sap or indirectly by secretion of the honeydew causing severe problems to plant growth and productivity. Moreover, this insect can transmit more than 150 virus species mainly to vegetables (Polston *et al.*, 2014) [29]. Cultivation of resistant varieties agricultural crops is an effective element in the strategy of integrated insect pest management programs (IPM). It can reduce the incidence of insect pests without causing any damage to the natural environment (Khan *et al.*, 2010) [21]. Producing pest-resistant cotton strains and varieties is a more economical and environmentally friendly control strategy, increasing crop productivity (Khan, 2011) [22]. Resistant plants control insect pests without the use of insecticides and without any pesticides contamination. Grafting resistant plant varieties helps control insect pest infestations (Hua and Hua 2000) [17]. However, resistance is governed by a combination of environmental and physical factors, not just a single factor. Genetically modified cotton plays a significant role in controlling the incidence of biting insect pests without polluting the environment with pesticides, and it increases yield per acre (Sunilkumar *et al.*, 2006) [33]. SCoT markers are a valuable tool for population studies, assessing genetic diversity and structure, and

identifying genotypes through unique fingerprinting (Baghizadeh and Dehghan, 2018) [6]. The main advantages of SCoT genotyping include its simplicity and cost-effectiveness (Guo *et al.*, 2012) [12]. These markers have been effectively utilized to evaluate genetic diversity in various crop species, including rice, cowpea, *Plantago*, and sesame (Igwe *et al.*, 2017; Rahimi *et al.*, 2018; Mesfer Alshamrani *et al.*, 2022) [19, 30, 26]. The present study was carried out to study the comparative tolerance of six cotton varieties against *P. gossypiella*, *E. insulana* and *B. tabaci* during two successive seasons, 2024 and 2025. As well as Genomic DNA extraction and purification were also studied.

Materials and Methods

Field treatments

This investigation was conducted at the experimental Farm of Sakha Agricultural Research Station, Kafr El-Sheikh Governorate, Egypt during the cotton growing seasons 2024 and 2025, to determine the susceptibility of six cotton varieties, Giza 45, Giza 87, Giza 92, Giza 94, Giza 96 and Giza 97 to infestation by the pink and spiny bollworms in an area of approximately 2100 m² for every variety was divided into 7 plots (300 m²/plots) and 3 replicated / plot (100 m²/replicate). All recommended practices were followed without insecticidal applications in the field experiments. The inspection process is carried out weekly after two months planting, from the beginning of July to the end of August, by taking a specific number of green cotton bolls randomly from all tests cotton varieties. The bolls must be uniform and of the same age, and are transferred to the laboratory to determine the percentage bollworm infestation. In each check, cotton green bolls of the same age were randomly chosen from all varieties to count the larvae of the bollworms. The cotton green bolls (100 bolls/variety, meaning 25 green bolls from each replicate)) were confined completely into a cloth bag. The samples were transferred to the laboratory for examination. Examination is performed using a sharp knife and then the infestation ratio was determined as green bolls containing larvae. weekly, numbers of *P. gossypiella* and *E. insulana* larvae were counted by dissecting cotton green bolls in the laboratory. While in the case of whitefly, *Bemisia tabaci* examination, every week samples were taken, as 100 random leaves (20 leaves from each replicate) per cotton variety, the adult insect is visually counted in the field, the remaining 100 leaves are transferred into a clear paper bag to the laboratory for nymph, *B. tabaci* examination using a binocular microscope. The mean population of all pests studies are recorded for all cotton varieties.

Laboratory treatments

a) Genomic DNA deposition and cleaning

Following the manufacturer's instructions, DNA was extracted using the DNeasy Mini Kit (Qiagen Santa Clarita, CA). Nano-drop 2000 (Thermo Scientific, USA) and 1% agarose gel electrophoresis (ethidium bromide staining) were both used to detect the quality and quantity of DNA. Also, be discovered and deposition by the DNeasy Mini Kit (Qiagen Santa Clarita, CA) according to the source's instructions.

b) SCoT-PCR reactions

Ten SCoT primers were used in the detection of polymorphism Table (1). The amplification reaction was carried out in 20 μ l reaction volume containing 10 μ l Master Mix (sigma), 2 μ l primer (10pmol), 2 μ l template DNA (10ng) and 6 μ l dH₂O, according to (Ibrahim *et al.*, 2019) [18].

Table 1: Sequences of SCoT Primers and annealing temperature

Primer Name	Sequence
SCoT-1	5'-ACGACATGGCGACCGACG-3'
SCoT-2	5'-ACCATGGCTACCACCGGC-3'
SCoT-3	5'-ACGACATGGCGACCCACA-3'
SCoT-4	5'-ACCATGGCTACCACCGCA-3'
SCoT-5	5'-CAATGGCTACCACTAGCG-3'
SCoT-6	5'-CAATGGCTACCACTACAG-3'
SCoT-7	5'-ACAATGGCTACCACTGAC-3'
SCoT-8	5'-ACAATGGCTACCACTGCC-3'
SCoT-9	5'-ACAATGGCTACCACCCAGC-3'
SCoT-10	5'-ACAATGGCTACCACTACC-3'

c) Interaction PCR

The polymerase chain reaction (PCR) assay was expanded in a Perkin-Elmer/GeneAmp® PCR System 9700 PE programmed system to complete 40 cycles after an initial five min analysis cycle at 94°C. Each cycle consisted of an analysis phase at 94°C for 45 seconds, an annealing step at 50°C for 50 seconds, and an elongation step at 72°C for 1min. In the final cycle, the first part was extended to 7 min at 72°C.

d) Detection PCR

The final products of the amplification were resolved by centrifugation using 1.5% agar gel containing 0.5ug/ml ethidium bromide dissolved in the final cycle 1X TBE solution - 4at 95 V. The PCR chain reaction was observed under UV light and imaged using an agar system (BIO-RAD 2000).

e) Findings analysis

For SCoT tests, a statistical binary matrix was created for all types detected chains, were visually scored as either visible (1) or no visible (0) and final findings recorded for both monomorphic and polymorphic chains. Dice's resemblance matrix structure was recorded amidst genotypes application the unweight pairs group technique with arithmetic means (UPGMA). To build an evolutionary tree (dendrogram), this matrix was applied according to the regional similarity index application the PAST software Version 1.91 (Hammer *et al.*, 2001) [15].

Statistical analysis

The current experiment's data showed that the mean and infestation percentage estimates were accurate. One-way analysis of variance for significance differences (ANOVA) was used to examine the results. Using the SAS Institute's PC-SAS software, the Tukey's approach (LSD, $p \leq 0.05$) of multiple comparison of the vulnerability of cotton varieties to infection by various pests of significant economic relevance was carried out among the tested varieties.

Results and discussion

1. Sensitivity of six cotton varieties to infestation of *P. gossypiella* and *E. insulana* larvae

From the data presented in Table (2 and 3) mentioned that the infestation of cotton green bolls by the pink bollworm, *P. gossypiella* and the spiny bollworm, *E. insulana* larvae during 2024 and 2025 seasons. Thus, considered Giza 94 one of the most susceptible cotton varieties, was the percentage infestation of 7.15 %, followed by Giza 45 variety (5.40%). Therefore, the varieties G 87 and Giza 92 were the most resistant, have a mean percentage of infestation, 4.40 and 3.50 % by *P. gossypiella*, respectively. Also, Giza 94 is sensitive to infestation by *E. insulana* (8.20%) followed by Giza 45 (4.90%) and so on G 87, Giza 92, Giza 96, and Giza 97 with a percentage of infestation to 3.40, 3.50, 3.30 and 3.00 %, respectively, in the first season. In the 2025 season, data in same Table showed the dates of Giza 94 increased insects populations achieving a percentage infestation 7.40 and 8.60 % both *P. gossypiella* and *E. insulana* larvae, respectively comparing with the other varieties. Also, two varieties of bollworm insects in cotton boll G 45 and G 87 with a

percentage of the infestation were 5.30 and 4.48 %, respectively by *P. gossypiella*. On the other hand, G 45 and G 87 were significantly resistant cotton to infestation of green bolls by the spiny bollworm, *E. insulana* with a percentage of infestation to 6.05 and 4.66 %, respectively. In the both seasons, the statistical analysis indicated that there were significant differences between Giza 94 and each of the other cotton varieties, while there were no significant differences between cotton varieties; G 45, G 87, G 92, G 96, and G 97. Therefore, these cotton varieties can be growing as a source of resistance to bollworms infestation. Supported by those indicated by many authors such as Saad *et al.* (2013) [31] showed that Giza 92 was significantly resistant genotypes to infestation of *H. armigera* El-Mezayn (2004) [10] and Shawer (2000) [32] mentioned that G 45 was the most susceptible cotton varieties *P. gossypiella* *E. insulana*. Ahmed *et al.*, (2005) [4] observed different levels of *Amrasca devastans* infestation among 18 cotton varieties and reported that two varieties (CRIS-467 and CRIS-134) were resistant, whereas two (CRIS-82 and MNH-536) were susceptible.

Table 2: Susceptibility of some cotton varieties of *Pectinophora gossypiella* larvae infestation during seasons 2024 and 2025.

Inspection date	Giza 45	Giza 87	Giza 92	Giza 94	Giza 96	Giza 97	Mean ±SE
2024							
July 18	3.50±0.43 ^b	2.75±0.50 ^b	2.50±0.43 ^b	4.25±0.41 ^a	2.00±0.35 ^b	2.50±0.56 ^b	2.95±0.41 ^b
July 25	4.50±0.55 ^a	4.00±0.60 ^a	3.25±0.41 ^b	5.50±0.55 ^a	3.50±1.36 ^b	3.50±0.25 ^b	4.05±0.42 ^a
Aug 1	5.25±0.11 ^b	4.50±0.89 ^b	3.25±0.21 ^c	7.25±0.64 ^a	3.25±0.51 ^c	3.25±0.22 ^c	4.45±0.80 ^a
Aug 8	6.75±0.21 ^b	5.50±0.90 ^b	4.00±0.35 ^c	9.50±0.41 ^a	4.00±0.35 ^c	2.25±0.22 ^d	5.30±1.27 ^a
Aug 15	7.00±0.35 ^b	5.26±0.88 ^c	4.50±0.55 ^c	9.25±0.45 ^a	4.00±0.35 ^c	4.50±0.25 ^c	5.85±0.99 ^a
Mean±SE	5.40±0.26 ^b	4.40±0.95 ^b	3.50±0.15 ^c	7.15±0.15 ^a	3.35±0.13 ^c	3.20±0.24 ^c	-
2025							
July 21	4.25±0.22 ^a	3.65±0.60 ^a	3.00±0.35 ^b	5.00±0.35 ^a	2.50±0.56 ^b	2.25±0.41 ^b	3.40±0.53 ^b
July 28	4.50±0.25 ^b	4.00±0.45 ^b	3.25±0.22 ^b	6.50±0.25 ^a	2.75±0.52 ^c	3.50±0.25 ^c	4.10±0.66 ^a
Aug 4	5.75±0.52 ^b	4.50±0.53 ^b	4.00±0.35 ^b	8.25±0.22 ^a	4.50±0.43 ^b	3.75±0.52 ^c	5.25±0.83 ^a
Aug 11	5.75±0.52 ^b	5.25±0.60 ^b	5.25±0.22 ^b	8.25±0.22 ^a	4.50±0.25 ^c	4.25±0.22 ^b	5.60±0.71 ^a
Aug 18	6.25 ±0.41 ^b	5.00±0.25 ^b	5.50±0.25 ^b	9.00±0.00 ^a	5.25±0.22 ^b	4.25±0.22 ^c	6.05±0.80 ^a
Mean±SE	5.30±0.05 ^b	4.48±0.56 ^b	4.20±0.07 ^b	7.40±0.12 ^a	3.90±0.18 ^b	3.60±0.16 ^b	-

Means with the same letters are not significantly different ($p \leq 0.05$ level)

Table 3: Susceptibility of some cotton varieties of *Earias insulana* larvae infestation during seasons 2024 and 2025

Inspection date	Giza 45	Giza 87	Giza 92	Giza 94	Giza 96	Giza 97	Mean ±SE
2024							
July 18	3.25±0.41 ^b	1.25±0.67 ^c	1.75±0.65 ^c	5.75±0.22 ^a	1.75±0.52 ^c	1.25±0.22 ^c	2.75±0.82 ^b
July 25	4.75±0.52 ^b	4.00±0.56 ^b	4.25±0.22 ^b	8.25±0.41 ^a	3.50±0.52 ^b	2.00±0.50 ^c	4.55±1.04 ^a
Aug 1	4.75±0.52 ^b	3.50±0.50 ^b	4.00±0.50 ^b	8.25±0.22 ^a	3.75±0.25 ^b	3.25±0.22 ^b	4.80±0.89 ^a
Aug 8	5.75±0.52 ^b	5.00±0.78 ^b	3.25±0.22 ^c	9.25±0.22 ^a	4.25±0.22 ^b	4.25±0.22 ^b	5.35±1.05 ^a
Aug 15	6.00±0.35 ^b	3.25±0.45 ^c	4.25±0.22 ^c	9.50±0.25 ^a	3.25±0.22 ^c	4.25±0.22 ^c	5.45±1.11 ^a
Mean±SE	4.90±0.04 ^b	3.40±0.90 ^b	3.50±0.08 ^b	8.20±0.00 ^a	3.30±0.15 ^b	3.00±0.16 ^b	-
2025							
July 21	5.50±0.43 ^a	3.00±0.35 ^b	3.00±0.35 ^b	6.25±0.22 ^a	2.25±0.22 ^b	2.25±0.22 ^b	3.85±0.85 ^b
July 28	5.50±0.25 ^b	5.25±0.54 ^b	4.50±0.25 ^b	8.50±0.43 ^a	3.25±0.22 ^b	4.50±0.43 ^b	5.25±0.89 ^a
Aug 4	6.00±0.61 ^b	5.05±0.60 ^b	4.75±0.22 ^b	9.25±0.22 ^a	3.25±0.22 ^c	4.22±0.22 ^b	5.49±1.04 ^a
Aug 11	6.75±0.65 ^b	4.00±0.76 ^c	5.25±0.22 ^b	9.25±0.22 ^a	4.25±0.65 ^c	4.25±0.25 ^c	5.95±0.94 ^a
Aug 18	6.50±0.22 ^b	6.00±0.53 ^b	5.00±0.22 ^c	9.75±0.22 ^a	5.25±0.22 ^c	4.25±0.25 ^c	6.15±0.97 ^a
Mean±SE	6.05±0.14 ^b	4.66±0.50 ^c	4.50±0.14 ^c	8.60±0.10 ^a	3.65±0.24 ^c	3.89±0.10 ^c	-

2. Sensitivity of six cotton varieties to infestation of *B. tabaci*, adults and nymphs

Data on the mean population of *B. tabaci* on cotton plants during seasons 2024 and 2025 is presented in Table (4 and 5). During season 2024, the infestation of *B. tabaci* adults gradually increased during inspection period on Giza 94 variety, it reached its peak during on August 1st, also in all varieties. Giza 94 variety, considered the most sensitive to whitefly (33.90 adult and 22.00 nymph per 100 cotton leaves),, followed by the Giza 96 variety (26.15 and 15.70 adult and nymph per 100 cotton leaves). While, Giza 97 variety was the most resistant for whitefly (16.60 adult and 14.65 nymphs).

Also, the other varieties of infection are moderate of 15.20, 15.15 and 14.48 adult with G 45, G 92 and G 87, respectively. Similar results were noticed in the second season 2025, on July 21st, July 28th and August 4, with highly population densities. Results indicated that G 94 variety was significantly the most susceptible cotton varieties to cotton plant infestation by whitefly adult and nymphs (*B. tabaci*) 34.45 adult and 16.15 nymph). While Giza 97 variety was the most resistant (15.65 adult and 8.80 nymph) and the other varieties of infection are moderate. Metwally, *et al.* (2005) showed that G 89 variety had the highest susceptibility cotton varieties of *B. tabaci* adult and immature stages while G 45 indicated that the least infested.

Table 4: Susceptibility of cotton varieties to *Bemisia tabaci* infestation adults infestation during seasons 2024 and 2025

Inspection date	Giza 45	Giza 87	Giza 92	Giza 94	Giza 96	Giza 97	Mean ±SE
2024							
July 18	8.50±0.75 ^b	5.00±0.55 ^c	14.25±1.14 ^a	3.25±0.54 ^c	4.25±0.41 ^c	8.00±0.35 ^b	7.65±1.94 ^d
July 25	39.00±1.61 ^a	12.00±0.90 ^b	15.25±1.43 ^b	13.00±0.35 ^b	34.75±1.29 ^a	9.00±0.61 ^c	22.20±6.11 ^c
Aug 1	40.75±1.71 ^c	25.30±0.86 ^d	23.25±1.29 ^d	66.25±3.66 ^a	47.50±2.38 ^b	47.50±1.44 ^b	45.05±6.91 ^a
Aug 8	39.75±1.14 ^a	24.25±0.95 ^b	22.75±0.41 ^b	43.00±1.54 ^a	23.25±0.41 ^b	8.25±0.54 ^c	27.40±6.33 ^b
Aug 15	7.25±0.54 ^c	18.30±0.98 ^b	23.00±0.79 ^b	44.00±2.26 ^a	21.00±0.79 ^b	10.25±0.82 ^c	21.10±6.47 ^c
Mean ±SE	27.05±0.62 ^b	16.97±0.65 ^d	19.70±3.04 ^c	33.90±0.62 ^a	26.15±0.35 ^b	16.60±0.33 ^d	-
2025							
July 21	3.75±0.43 ^c	9.00±0.92 ^b	2.25±0.43 ^c	18.25±0.41 ^a	18.00±1.84 ^a	11.00±0.94 ^b	10.75±1.94 ^c
July 28	18.50±3.01 ^c	8.50±0.87 ^d	21.50±1.52 ^c	26.75±0.74 ^b	34.75±4.02 ^a	16.75±1.30 ^d	23.65±6.11 ^b
Aug 4	44.50±1.60 ^b	35.50±0.86 ^c	34.00±0.94 ^c	62.00±2.79 ^a	59.25±2.70 ^a	20.00±0.61 ^d	43.95±6.91 ^a
Aug 11	13.00±1.87 ^d	20.65±0.94 ^c	23.75±1.85 ^b	45.75±3.49 ^a	23.00±1.27 ^b	18.50±1.60 ^c	24.80±6.33 ^b
Aug 18	12.75±0.57 ^c	15.20±0.53 ^c	10.50±1.25 ^d	19.50±0.56 ^b	23.50±0.43 ^a	12.00±0.25 ^c	13.65±6.47 ^c
Mean ±SE	16.50±0.47 ^b	17.77±0.87 ^b	18.50±1.92 ^b	34.45±0.43 ^a	31.70±0.81 ^a	15.65±0.23 ^b	-

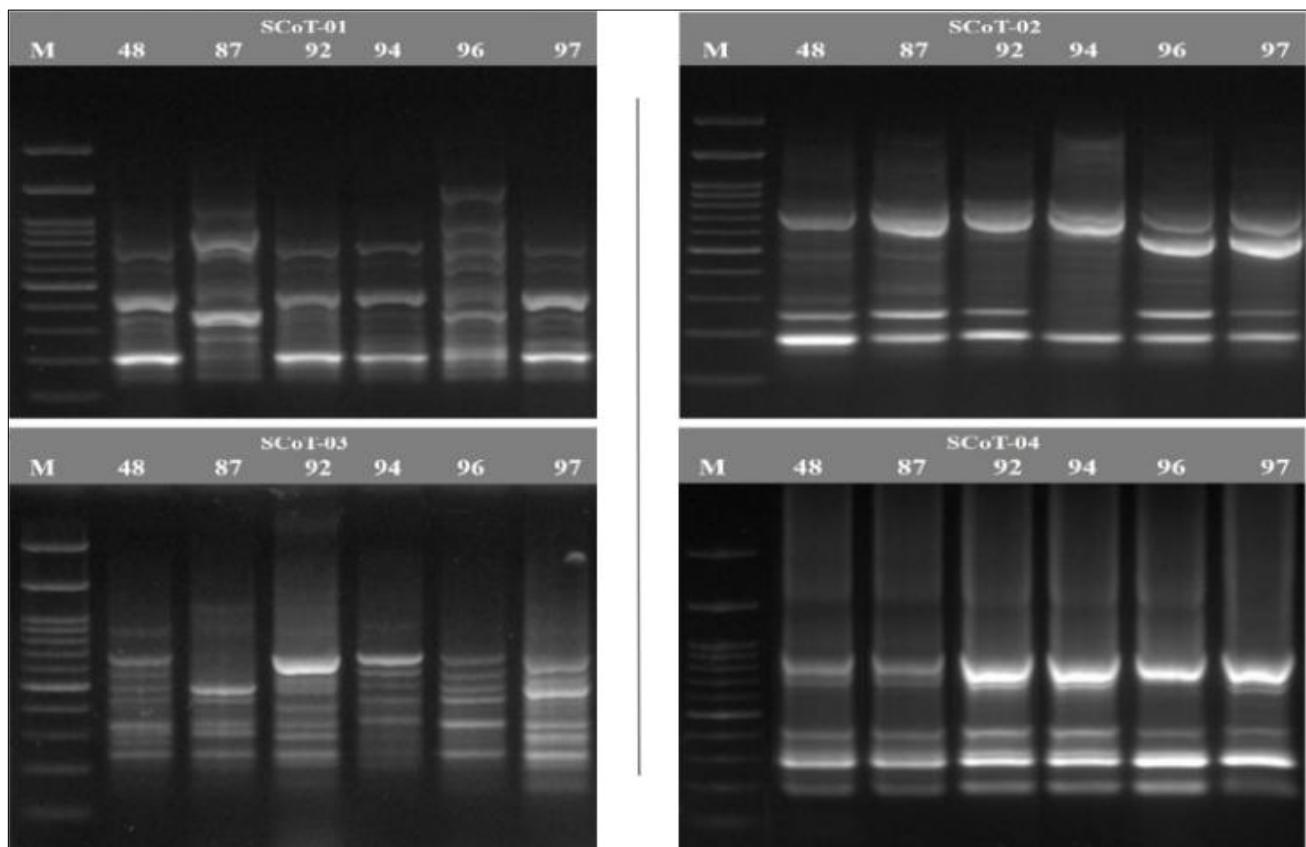
Table 5: Susceptibility of cotton varieties to *Bemisia tabaci* infestation nymphs infestation during 2024 and 2025 seasons

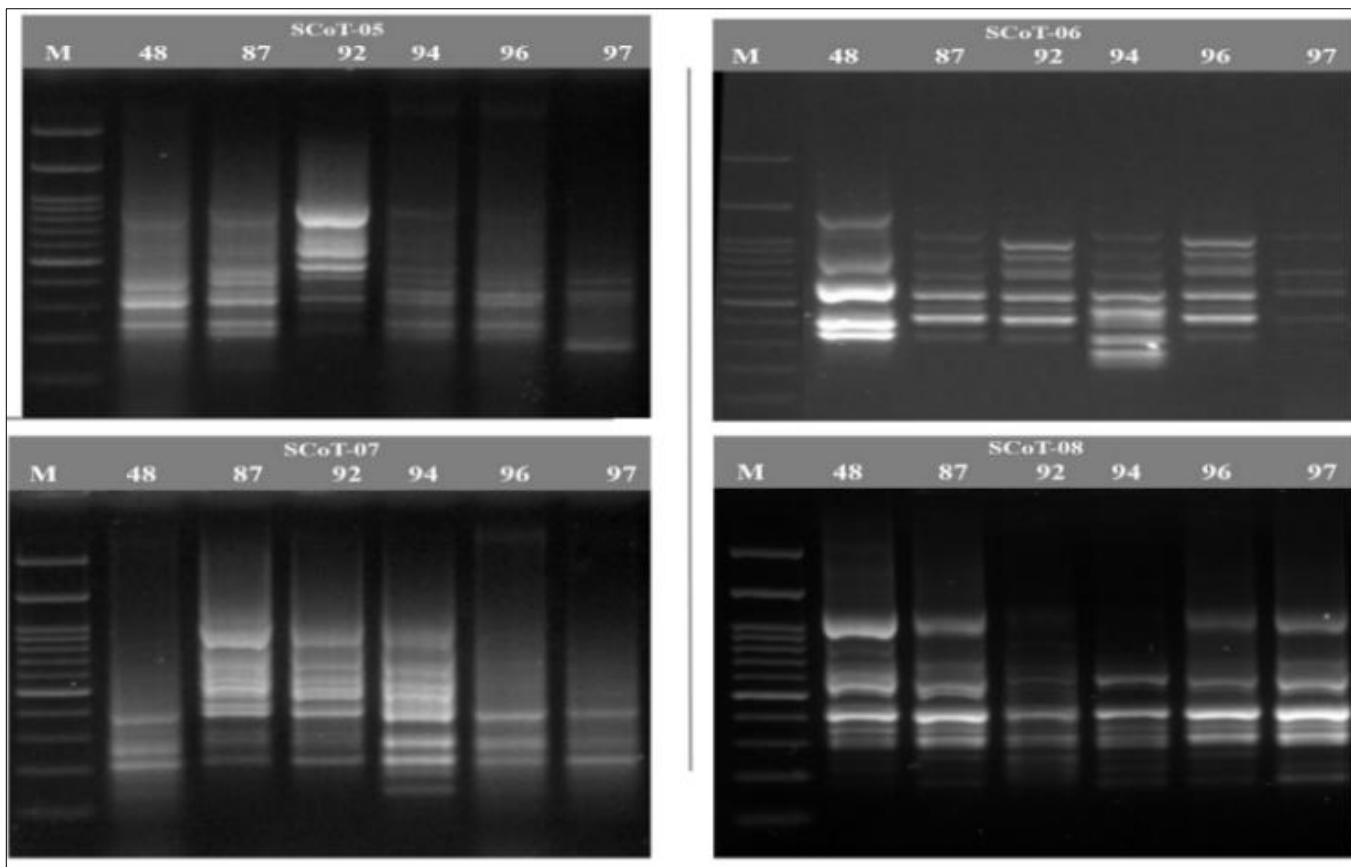
Inspection date	Giza 45	Giza 87	Giza 92	Giza 94	Giza 96	Giza 97	Mean ±SE
2024							
July 18	12.25±0.40 ^a	5.43±0.86 ^b	6.25±0.42 ^b	15.75±1.19 ^a	2.25±0.41 ^c	3.75±0.22 ^c	8.05±2.57 ^c
July 25	13.00±0.94 ^d	17.35.45 ^b	16.75±0.67 ^c	24.25±1.14 ^a	18.00±0.35 ^b	19.50±0.56 ^b	18.30±1.84 ^a
Aug 1	19.50±0.75 ^d	18.50±0.75 ^d	22.50±0.75 ^c	29.00±2.15 ^a	24.50±2.36 ^b	19.25±0.73 ^d	22.95±1.80 ^a
Aug 8	12.75±1.19 ^b	15.15±0.76 ^a	12.75±0.89 ^b	18.75±1.04 ^a	16.00±2.10 ^a	17.00±1.00 ^a	15.45±1.19 ^b
Aug 15	18.50±1.60 ^b	16.00±0.87 ^b	17.50±1.46 ^b	22.25 0.96 ^a	17.75±0.98 ^b	13.75±1.51 ^c	17.95±1.35 ^b
Mean ±SE	15.20±0.72 ^b	14.48±0.45 ^b	15.15±0.28 ^b	22.00±1.48 ^a	15.70±0.80 ^b	14.65±0.47 ^b	-
2025							
July 21	7.75±1.24 ^a	4.75±0.96 ^b	4.50±0.56 ^b	9.00±0.61 ^a	3.50±0.43 ^b	2.25±0.11 ^b	5.40±1.28 ^d
July 28	15.50±1.09 ^a	14.76±0.65 ^b	12.25±0.41 ^c	18.00±1.84 ^a	13.50±1.14 ^b	13.75±1.29 ^b	14.60±0.99 ^b
Aug 4	24.25±0.41 ^a	17.22±0.92 ^b	16.50±0.83 ^b	22.00±1.54 ^a	17.25±1.14 ^b	14.75±1.43 ^b	18.95±1.79 ^a
Aug 11	9.75±0.22 ^b	5.00±0.28 ^c	7.00±0.61 ^b	17.50±1.03 ^a	10.50±1.03 ^b	5.00±0.35 ^c	9.95±2.13 ^c
Aug 18	6.00±0.35 ^b	7.50±0.97 ^b	8.00±0.35 ^b	14.25±0.41 ^a	13.00±0.35 ^a	7.75±0.65 ^b	9.80±1.61 ^c
Mean ±SE	12.65±0.43 ^b	9.84±0.76 ^c	9.65±0.44 ^c	16.15±0.47 ^a	11.55±0.65 ^b	8.80±0.69 ^c	-

Means with the same letters are not significantly different (P ≤ 0.05% level).

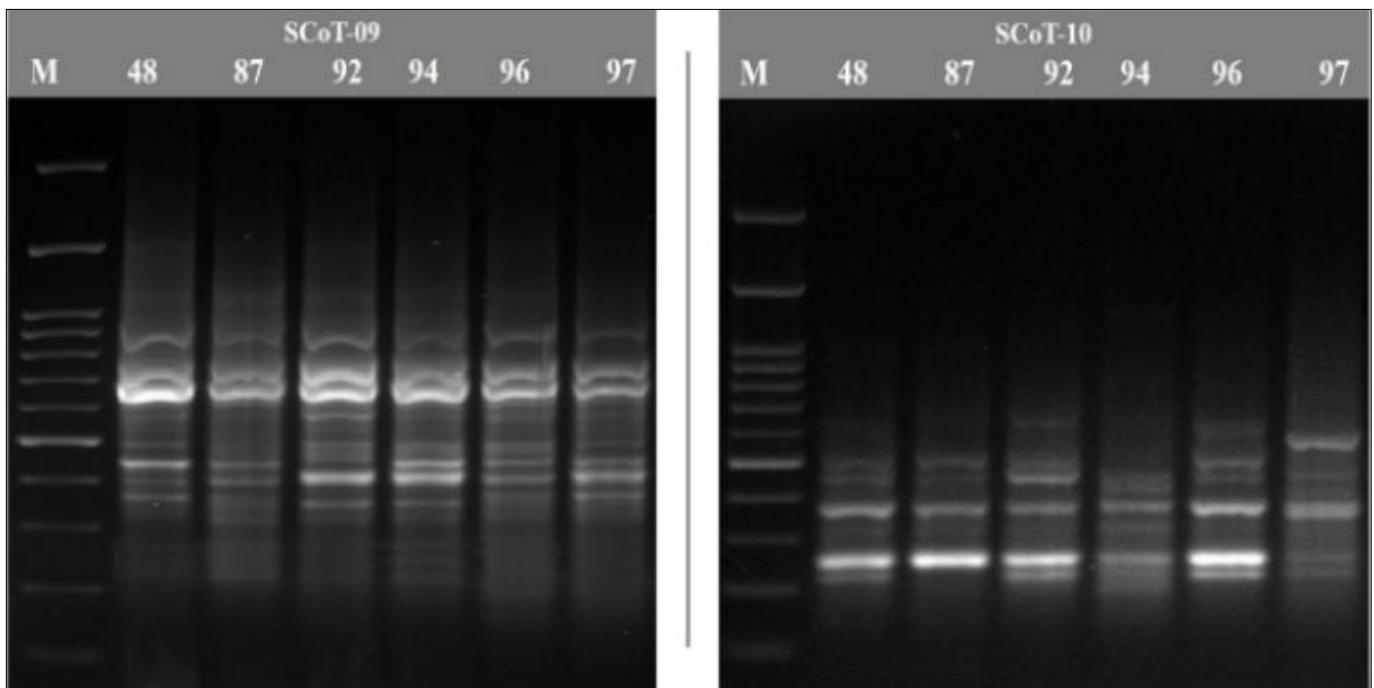
Molecular marker techniques

The amplification results of the ten SCoT primers used in this investigation are presented in Table (6). The band size and number data of monomorphic, polymorphic bands and the percentage of polymorphism obtained per each SCoT-primer. were used to amplify DNA fragments and produced a total of 130 bands with an average of 13 bands per primer amplified, ranging from approximately 150-1400 bp. Of them, 37 bands were polymorphic across the accessions with an average of approximately 3.7 bands. The average percentage of


polymorphism was 41.16%. The oligonucleotide SCoT-1 and SCoT-09 amplified the highest no. of SCoT (16 and 17 bands) loci. The primer SCoT-4 and SCoT-10 (9 and 10 bands respectively) showed the lowest polymorphic (9 bands). While SCoT-4 was given the lowest percentage of polymorphism (11%). These differences in polymorphic bands may be useful in cotton DNA identification, as shown (Fig.1, 2 and 3). Table (7) shows the similarity matrices according to the Jaccard Coefficient among sesame based on start codon targeted (SCoT) analysis.


Table 6: The total number of amplicons, monomorphic, polymorphic fragments, percentage of polymorphism and Frequency as revealed by SCoT markers in cotton plant

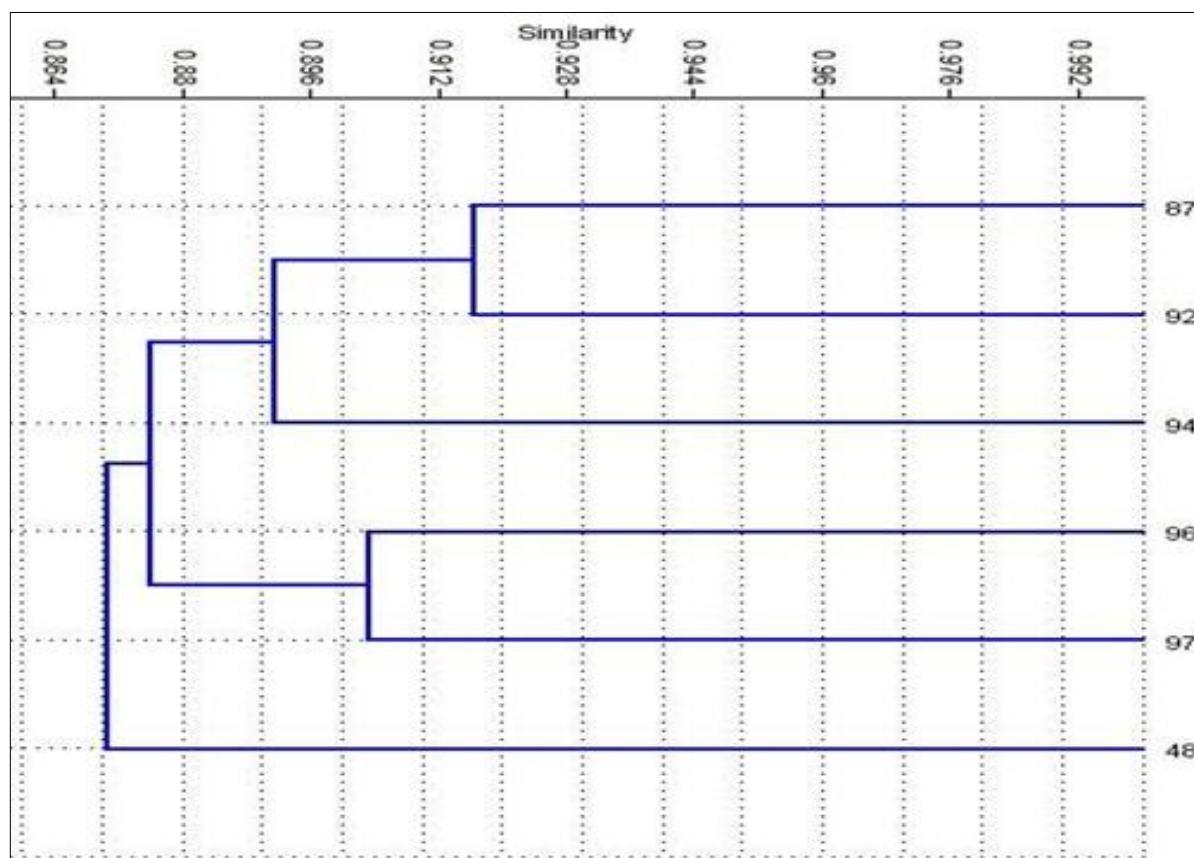
Molecular Markers	Molecular Wight	Total No. of Amplicons	Monomorphic Amplicons	Polymorphic Amplicons	Unique Amplicons	Polymorphism %	Frequency
SCoT-1	170-1400bp	16	11	4	1	31	0.79
SCoT-2	170-1300bp	14	9	1	4	36	0.73
SCoT-3	180-890bp	11	6	4	1	45	0.89
SCoT-4	190-1500bp	9	8	1	0	11	0.98
SCoT-5	196-856bp	11	4	4	3	63	0.62
SCoT-6	210-1400bp	14	7	4	3	50	0.68
SCoT-7	150-950bp	13	6	6	1	54	0.71
SCoT-8	190-1100bp	15	8	6	1	47	0.79
SCoT-9	210-1400bp	17	12	4	1	29	0.84
SCoT-10	200-600bp	10	5	3	2	50	0.67
Total	-	130	76	37	17	416	7.7
Average	-	13	7.6	3.7	1.7	41.16%	0.77


Table 7: Similarity matrix among eight sesame plants based on SCoT-PCR analysis

Samples	48	87	92	94	96	97
48	100					
87	86.9	100				
92	86.9	91.6	100			
94	87.2	90.0	88.2	100		
96	87.4	90.2	89.3	86.9	100	
97	86.8	86.8	85.9	86.3	90.3	100

Fig 1: SCoT products on 1% agarose gel using different primers: SCoT 1, SCoT 2, SCoT 3 and SCoT4

Fig 2: SCoT products on 1% agarose gel using different primers: SCoT 5, SCoT 6, SCoT and SCoT8


Fig 3: SCoT products on 1% agarose gel using different primers: SCoT 9, and SCoT 10

The dendrogram generated by the UPGMA cluster analysis of CAPS markers based on the Nei and Li coefficient shows the clustering of ten samples (Fig. 4) under study. The investigation is divided into two groups at 0.864. The first one includes accession 48 only. The second group is divided into two subgroups at 0.884. The first subgroup has accessions, 96 and 97, only. Whereas the second subgroup is further divided

into sub-subgroups at 0.912, one of them consists of accessions 96 and 87 only. Molecular markers are used to characterize phylogenetic relationships at the genomic DNA level (Madhumati, 2014). SCoT marker design is straightforward depending on a conserved sequence such as ATG surrounding the start codon of translation (Xiong *et al.*, 2011) [34]. Besides these markers are multilocus, which helps obtain high genetic

polymorphism. The number of amplicons observed in cotton from the present study is comparable to the results obtained in other studies such as in groundnut (Xiong *et al.*, 2011) [34], mango (Luo *et al.*, 2010) [23], and Dendrobium Nobile (Bhattachryya *et al.*, 2013). The genetic polymorphism generated by SCoT markers can be used for tracing and

reconstruction of the breeding history of the domesticated genotypes. Because of their great resolving capacity, SCoT is useful in genetic diversity research (Hamidi *et al.*, 2014 and Cao *et al.*, 2006) [7]. These markers are effective and low-cost analytical tools for evaluating genetic variants in a wide range of plants.

Fig 4: Phenogram obtained by UPGMA cluster analysis based on Nei and Li coefficient generated by SCoT-Markers showing clustering of cotton plants

Conclusion

These experiments were contacted to determine the susceptibility of certain cotton varieties to bollworms infestation; pink and spiny with 7.15 and 7.40, 8.20 and 8.60 % in both seasons, respectively, and it was found that the Giza 94 variety. Maximum infestation of whitefly, adult and nymphs on green leaves (22.00 and 16.15), (33.90 and 34.45) were noted at Giza 94 variety in both seasons, respectively. Experiments varieties, Giza 94 was found to be susceptible under ecological conditions and Giza 97 was found to resistant against pink, spiny bollworms and whitefly infestation. This study demonstrated clear differences in performance among the tested six cotton varieties and assessed their resistances to pink, spiny bollworms and whitefly infestation. Variations in infestation among varieties were found to be polymorphism and were due to differences in trachoma density, morphological features, and biochemical content, which influenced infestation levels. The SCoT primer analysis successfully demonstrated the utility of this molecular marker system for genetic diversity assessment. With an overall rate of 41.16% and successful amplification of 130 bands, the primer set provides adequate

resolution for genetic studies. The identification of high-performing primers (SCoT-09, SCoT-1) and low-performing ones (SCoT-4) will inform future primer selection strategies for similar investigations.

References

1. Abro GH, Syed TS, Tunio GM, Khuhro MA. Performance of transgenic Bt cotton against insect pest infestation. Biotech. 2004;3(1):75–81.
2. Abu Hatab A. Performance of Egyptian cotton exports in international market. Agric Econ Res Rev. 2009;22:225–235.
3. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126.
4. Ahmed G, Arif MJ, Sanpal MRZ. Population fluctuation of jassid *Amrasca devastans* (Dist.) in cotton through morphophysical plant traits. Caderno Pesqui Ser Biol. 2005;17:71–79.
5. Ali A, Aheer GM, Saeed M. Physico-morphological factors affecting resistance in genotypes of cotton against sucking insect pests. Pak Entomol. 1999;21:53–55.

6. Baghizadeh A, Dehghan E. Efficacy of SCoT and ISSR markers in assessment of genetic diversity in some Iranian pistachio (*Pistacia vera* L.) cultivars. *Pistachio Health J.* 2018;1(1):37–43.
7. Cao PJ, Yao QF, Ding BY, Zeng HY, Zhong YX, Fu CX, et al. Genetic diversity of *Sinojackia dolichocarpa* (Styracaceae), an endangered endemic species of China, detected by ISSR. *Biochem Syst Ecol.* 2006;34(3):231–239.
8. Chaudhry GB, Bhsrpoda TM, Patel JJ. Effect of weather on activity of cotton bollworm in middle Gujarat. *Gujarat J Agrometeorol.* 1999;1(2):137–142.
9. Dochia M, Sirghie C, Kozłowski RM, Roskwitalski Z. Cotton fibers. In: *Handbook of natural fibers: types, properties, and factors affecting breeding and cultivation.* Vol 1. Cambridge: Woodhead Publishing Elsevier, 2012, p11-23.
10. El-Mezayyen GA. Evaluation of some Egyptian cotton varieties to infestation of piercing sucking insects, cotton leafworm and bollworm at Kafr El-Sheikh region. *J Agric Sci Mansoura Univ.* 2004;29(1):433–441.
11. General Authority for Investment and Free Zones (GAFI). Textiles and ready-made garments sector overview report. Cairo (EG): GAFI, 2014.
12. Guo DL, Zhang JY, Liu CH. Genetic diversity in some grape varieties revealed by SCoT analyses. *Mol Biol Rep.* 2012;39(5):5307–5313.
13. Hafez YM. Control of *Botrytis cinerea* by resistance inducers benzothiadiazole and hydrogen peroxide on white pepper fruits under postharvest storage. *Acta Phytopathol Entomol Hung.* 2010;45(1):13–29.
14. Hamidi H, Talebi R, Keshavarzi F. Comparative efficiency of functional gene-based markers SCoT and CDDP with ISSR markers in wheat (*Triticum aestivum* L.). *Cereal Res Commun.* 2014;42(4):558–567.
15. Hammer AT, Harper DAT, Ryan PD. PAST: palaeontological statistics software package for education and data analysis. *Palaeontol Electron.* 2001;4(1):9.
16. Hammerschmidt R, Nuckles EM, Kuc J. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to *Colletotrichum lagenarium*. *Physiol Plant Pathol.* 1982;20(1):73–84.
17. Hua ML, Hua LC. Study on bollworm resistance of CRI-29 and the target to control F3 bollworms. *China Cotton.* 2000;27:20–22.
18. Ibrahim SD, Abd El-Hakim AF, Ali HE, Abd El-Maksoud RM. Genetic differentiation using ISSR, SCoT and DNA barcoding for quinoa genotypes. *Arab J Biotechnol.* 2019;22(2):103–118.
19. Igwe DO, Afiukwa CA, Ubi BE, Ogbu KI, Ojuederie OB, Ude GN. Assessment of genetic diversity in *Vigna unguiculata* accessions using ISSR and SCoT markers. *BMC Genet.* 2017;18(1):1–13.
20. Jody C, President V, Boyd S, Huffman M. The economic outlook for U.S. cotton. Memphis (TN): National Cotton Council of America, 2016.
21. Khan MA, Akram W, Khan HAA, Asghar J, Khan TM. Impact of Bt-cotton on whitefly *Bemisia tabaci* population. *Pak J Agric Sci.* 2010;47(4):327–332.
22. Khan SM. Varietal performance and chemical control as tactics against sucking insect pests of cotton. *Sarhad J Agric.* 2011;27(2):255–261.
23. Luo C, Chen XH, Ou SJ, Gao MP. Analysis of diversity and relationships among mango cultivars using SCoT markers. *Biochem Syst Ecol.* 2010;38(6):1176–1184.
24. Madhumati B. Potential and application of molecular marker techniques for plant genome analysis. *Int J Pure Appl Biosci.* 2014;2(1):169–188.
25. Malik CP, Singh MP. Plant enzymology and histoenzymology. New Delhi (IN): Kalyani Publishers; 1980. p. 54–56.
26. Mesfer AL, Shamrani S, Safhi FA, Alshaya DS, Ibrahim AA, Mansour H, et al. Genetic diversity of *Sesamum indicum* using biochemical, physiological, karyological and molecular markers. *Front Genet.* 2022;13:1035977.
27. Metwally SMI, Helal RMY, Shawer MB, Salem RM, El-Mezaien ABM. Susceptibility of some Egyptian cotton varieties to whitefly *Bemisia tabaci* infestation. *Egypt J Agric Res.* 2005;83(2):525–537.
28. Perring TM. The *Bemisia tabaci* species complex. *Crop Prot.* 2001;20:725–737.
29. Polston JE, de Barro P, Boykin LM. Transmission specificities of plant viruses with newly identified *Bemisia tabaci* species. *Pest Manag Sci.* 2014;70:1547–1552.
30. Rahimi M, Nazari L, Kordrostami M, Safari P. SCoT marker diversity among Iranian *Plantago* ecotypes and association with agronomic traits. *Sci Hortic.* 2018;233:302–309.
31. Saad IAI, El-Samahy MFM, Sherif ASF. Susceptibility of some Egyptian cotton varieties and genotypes to bollworm infestation. *J Plant Prot Pathol Mansoura Univ.* 2013;4(6):545–552.
32. Shawer DMB. Ecological studies on some insect pests infesting cotton plants [MSc thesis]. Kafir El-Sheikh (EG): Tanta University, 2000.
33. Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS. Engineering cotton seed for human nutrition by reducing toxic gossypol. *Proc Natl Acad Sci U S A.* 2006;103(48):18054–18059.
34. Xiong F, Zhong R, Han Z, Jiang J, He L, Zhuang W, et al. Start codon targeted polymorphism for evaluation of genetic variation in peanut genotypes. *Mol Biol Rep.* 2011;38:3487–3494.