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Abstract 

The area of discovery and killing power (K-value) of the parasitoid Campoletis chlorideae Uchida with interaction between different 

larval age of the host Helicoverpa armigera (Hübner) were studied at different parasitoid and host densities. The area of discovery 

of the parasitoid decreases linearly while the killing power (K- value) increases significantly with the increase of parasitoid. 

However, when the host density increases both the area of discovery and killing power (k-value) increases up to 16 hosts and 

thereafter they decrease. The area of discovery and killing power (K-value) in maximum in 2nd instar followed by 3rd instar, 1st instar 

and 4th instar larvae of the host H. armigera. As the parasitoid density increases mutual interference increases, which cause a 

reduction in an individual searching efficiency. 
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Introduction 

The gram pod borer Helicoverpa armigera (Hübner) is an 

important pest of chickpea and causes considerable damage to 

this crop [1, 2]. The endolarval parasitoid Campoletis chlorideae 

is a potential bio control agent against H. armigera and 

parasitizes the moth’s larval stage [3, 4, 5]. The C. chlorideae 

helps in suppressing the pest population on chickpea. 

The dynamic relationship between parasitoid and their hosts is 

one of the dominant themes in ecology. Yet the theory of host 

parasitoid interaction has some notable problems: one of the 

“paradox of enrichment”, where classical model predicts that 

enriching the system will cause an increase in the equilibrium 

density of the parasitoid but not in that of the host [6] and will 

destabilize the commonly equilibrium. 

For a successful pest management programme information 

regarding host finding efficiency, mutual interference and 

killing power of the parasitoid are necessary [7, 8, 9]. Nicholson 
[10] and Nicholson & Bailey [11] in their deductive model 

assumed that parasitoid behavior is unaffected either by host 

density and distribution or by the density of searching 

parasitoid and also assumed a random search by the parasitoid 

density constant searching ability which is the characteristic of 

the species. The parameter they suggested to describe the 

searching behavior was parasitoid. “Area of discovery” 

representing the total area effectively searched by the 

parasitoid during a period of time or during its life time and can 

mathematically be derived from the Nicholsonian competition 

curve by the equation. 
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Where a= “area of discovery” of the parasitoid; p= density of 

parasitoid searching for hosts; N= initial host density; and S= 

hosts surviving parasitism. 

Previously, it was thought that this model was sufficient to 

describe host parasitoid interactions in some cases [12, 13]. 

However, soon it was realized that Nicholsonian model was 

based on inaccurate assumptions and cannot explain all the 

experimental results. Its main drawback being the prediction of 

increasing oscillation of host and parasitoid population and the 

inability to accommodate two or more competing females in 

the ecosystem. Later, Hassell & Huffaker [14] showed that 

Nicholsonian “a” is not constant but decreases with increasing 

parasitoid density. Based on these results and on reanalysis of 

previous studies Hassell & varley [15] improved Nicholsonian 

model by incorporation the effect of density dependent factor 

i.e. mutual interference [m] (the slope of straight line regression 

when logs is plotted against log P). 

 

Log a = Log Q –m log P 

 

Where Q=Quest constant (the area of discovery of the 

parasitoid when only one female is searching). 

This modification overcame some of the major drawbacks of 

the original model. It increases the stability of the model and 

permitted more than one parasitoid to act in the ecosystem [16, 

17]. However inspite, of criticisms [18, 19, 20], this model is still 

widely accepted owing to its simplicity [9]. 

The K value a measure of “Killing power” Ooi, [21] of a 

particular mortality factor (Parasitism by C. chlorideae in this 

case) a logarithmic scale Varley & Gradwell [22] was obtained 

from the formula: 
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In view of the above information in the present work an attempt 

has been made to investigate the searching efficiency. Mutual 

interference and killing power of the parasitoid C. chlorideae 

on the different larval ages (1st instars to VIth instar) of the host 

H. armigera. 

 

Materials and Methods 

The parasitoid, C. Chlorideae and its host H. armigera were 

reared in the laboratory at 22±40C, 70±10 Rh and 10 h light: 

14h dark photoperiod Kumar et al [23]. The different larval age 

(Ist Instars to IVth Instar) of the host were drawn from the 

maintained culture and were utilized as hosts, one day old, 

satiated Mathavan [24], with 30% honey solution, mated and 

experienced females T’ Hart et al [25] were used as parasitoid. 

To study the area of discovery of the parasitoid, C. chlorideae, 

two sets of experiments were performed. 

 

Experiment-1 

In the first set of experiment 4 troughs (Ca 20 cm diameter x 

10 cm height) were arranged and numbered as 1 to 4. 50 first 

instars larvae were placed separately on four moistened filter 

paper and were transferred individually in the marked troughs. 

Troughs were covered with glass plates. In the Ist trough one, 

in 2nd two, in the 3rd four and in the 4th troughs eight parasitoid 

were introduced and were allowed to attack host for 3 hrs. The 

same experiments were performed on the 2nd instars, 3rd instars 

and 4th instars larvae of the host H. armigera. 

 

Experiment-2 

In the second set of experiment varied host density viz. 1, 2, 4, 

8, 16, 32 and 64 hosts were placed in seven moistened filter 

paper. These filter papers having the hosts were transferred 

individually in 7 differently marked troughs as in the first set. 

Troughs were covered with glass plates. One parasitoid was 

introduced each petri dish and was allowed to attack for 3 hrs. 

The same experiments were performed on the 2nd instars, 3rd 

instars and 4th Instars larvae of the host H. armigera. 

Both the experiments were replicated five times with new 

experienced female parasitoid and fresh hosts. After 

parasitisation, the larvare in both the experiments were 

transferred in to the glass tubes having fresh foliage of gram 

(Cicer aritenum) plants Kumar et al [23] (to provide moisture to 

the developing egg) until emergence. The glass vials were kept 

plugged with absorbent cotton. Emergent were counted and the 

data was statistically analyzed.  

 

Results 

Figs-1 and Figs-2 explain the area of discovery (a) Calculated 

by Nicholson’s [10] Model, while Figs-3 and Figs-4 are from 

Hassell & Varley’s [15] model. In all the four host larval age the 

numerical value of area of discovery, M value and Q value in 

increasing parasitoid density are shown in Table-1 while the 

value of area of discovery in increasing host density is given 

Table-2. 

Increase in the parasitoid density has a two-fold effect: (i) The 

area of discovery decreases linearly with a significant negative 

correlation. This decrease being Minimum in 2nd larval age (y=-

0.189-0.605 x, r = -0.976, p<0.001, mean value = 0.382±0.184) 

followed by 3rd larval age (y=-0.246-0.576 x, r = -0.977, p < 

0.001, mean value = 0.342±0.159), 1st larval age (y=-0.269-

0.594 x, r = -0.972, p < 0.001, mean value = 0.321±0.151) and 

4th larval age (y=-0.528-0.710 x, r = -0.999, p < 0.001, mean 

value = 0.164±0.101) of the host (Table-1, Fig -1) and (ii) K-

value increases linearly (Table-3, Fig-3), This increase being 

maximum in 2nd larval age (y=-0.279-0.366 x, r = -0.977, p < 

0.001, mean value = 0.445±0.145) followed by 3rd larval age 

(y=-0.242-0.360 log x, r = -0.988, p < 0.001, mean value = 

0.405±0.141), 1st larval age (y=-0.233-0.315 log x, r = -0.975, 

p < 0.001, mean value = 0.376±0.126) and 4th larval age (y=-

0.126-0.119 log x, r = -0.993, p < 0.001, mean value = 

0.179±0.046) of the host. The mutual interference constant [m] 

and quest constant (Q) (Table-1) is maximum in 2nd larval age 

(m = -0.605, Q = 0.579) followed by 3rd larval age (m = -0.576, 

Q = 0.510), 1st larval age (m = -0.594, Q = 0.477) and 4th larval 

age (m = -0.710, Q = 0.300) of the host (Table-3, Fig -3). 

Interestingly, when the host identity increases both the area of 

discovery and K-value increases up to 16 hosts and thereafter 

they decrease. The area of discovery is high in 2nd instars (mean 

value = 0.715±0.157) followed by 3rd instars (mean value = 

0.572±0.196), 1st instars (mean value = 0.504±0.187) and 4th 

instars (mean value = 0.414±0.121) of the host (Table-2, Fig-

2). The killing power (K-value) is maximum in 2nd instars 

(mean value = 0.311±0.068) followed by 3rd instars (mean 

value = 0.249±0.085), 1st instars (mean value = 0.219±0.081) 

and 4th instars (mean value = 0.180±0.053) of the host (Table-

4, Fig-4). 

 

Table 1: Area of discovery of Campoletis chlorideae at its four 

densities. Each test utilized 50 hosts (Helicoverpa armigera) on the 

defferent host’s larval age 
 

Initial parasitoid 

density 

Area of discovery of the parasitoiod 

1st Instar 2nd Instar 3rd Instars 4th Instars 

1 0.477 0.579 0.510 0.300 

2 0.410 0.483 0.433 0.178 

4 0.255 0.300 0.269 0.111 

8 0.142 0.168 0.158 0.068 

Meanvalue 0.321±0.151 0.382±0.184 0.342±0.159 0.164±0.101 

M value -0.594 -0.605 -0.576 -0.710 

Q value 0.477 0.579 0.510 0.300 

Regression: y=a+bx 

A -0.269 -0.189 -0.246 -0.528 

B -0.594 -0.605 -0.576 -0.710 

R -0.972 -0.976 -0.977 -0.999 

P -0.001 -0.001 -0.001 -0.001 

 

Table 2: Area of discovery of Campoletis chlorideae at seven level 

of host densities (Helicoverpa armigera) with one searching female 

parasitoid on the different hosts larval age 
 

Initial host 

density 

Area of discovery of the parasitoid 

1st Instars 2nd Instars 3rd Instars 4th Instars 

1 0.223 0.510 0.223 0.223 

2 0.356 0.692 0.510 0.356 

4 0.510 0.798 0.597 0.430 

8 0.596 0.855 0.692 0.510 

16 0.770 0.884 0.826 0.597 

32 0.655 0.770 0.692 0.439 

64 0.421 0.499 0.464 0.343 

Mean Value 0.504±0.187 0.715±0.157 0.572±0.196 0.514±0.121 
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Table 3: K-Value (killing power) of Campoletis chlorideae at its four densities. Each test utilised 50 hosts (Helicoverpa armigera) on the 

different hosts larval age 
 

Initial parasitoid density 
K- value of the parasitoid 

1st Instar 2nd Instar 3rd Instars 4th Instars 

1 0.208 0.252 0.222 0.131 

2 0.356 0.420 0.377 0.155 

4 0.444 0.523 0.468 0.194 

8 0.495 0.585 0.553 0.237 

Mean Value 0.376±0.126 0.445±0.145 0.405±0.141 0.179±0.046 

Regression: y = a + b log x 

A 0.233 0.279 0.242 0.126 

B 0.315 0.366 0.360 0.119 

R 0.975 0.977 0.988 0.993 

P 0.001 0.001 0.001 0.001 

Table 4: K- Value (Killing power) of Campoletis chlorideae at seven level of host densities (Helicoverpa armigera) with one searching female 

parasitoid on the different hosts larval age 
 

Intitial host density 
K-Value of the parasitoid 

1st Instars 2nd Instars 3rd Instars 4th Instars 

1 0.097 0.222 0.097 0.097 

2 0.155 0.301 0.222 0.155 

4 0.222 0.347 0.259 0.187 

8 0.259 0.372 0.301 0.222 

16 0.335 0.385 0.359 0.259 

32 0.285 0.335 0.301 0.191 

64 0.183 0.217 0.202 0.149 

Mean Value 0.248±0.081 0.425±0.068 0.333±0.085 0.138±0.053 

 

 
 

Fig 1: Area of discovery of Campoletis chlorideae at its four density 

on the different larval age of the host Helicoverpa armigera 

 
 

Fig 2: Area of discovery of Campoletis chlorideae at seven host 

density level in different larval age of the host Helicoverpa armigera 
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Fig 3: Killing power (K-value) of Campoletis chlorideae at its four 

densities on the different larval age of the host Helicoverpa armigera 

 

 
 

Fig 4: Killing power (K-value) of Campoletis chlorideae at seven 

host density level in different larval age of the host Helicoverpa 

armigera 

 

Discussion 

The assumption that host searching behavior of a female 

parasitoid is constant irrespective of host and parasitoid 

density, Nicholson [10]; Nicholson & Baily [11] has already been 

refuted by Hassan [26] and Latheef et al [7]. Now it is known to 

be regulated by a number of factors viz. parasitoid’s age 

Hollings [27], confusion, area of searching environment 

Wiedenman & O’Neil [28], host defense, host dispersion, 

learning Taylor [29], availability of alternative host stages, 

climatic conditions of host and parasitoid Kumar & Tripathi 
[30], host distribution Hassell, et al. [31] and nutrition of the 

parasitoid during its larval development [32], physical state of 

the parasitoid and the co-presence of males with the females 
[33]. These study the representative of the full range of response 

by a parasitoid to host density. 

The inverse relationship between the parasitoid density and the 

area of discovery was the most significant trend exhibited 

during this study (Fig-2). This reflects the existence of 

intraspecific competition amongst the parasitoid [34, 35]. The 

results obtained that as the parasitoid density increases, mutual 

interference increases which cause a reduction in an 

individual’s searching efficiency [36]. The effect of this 

interference on the stability of host parasitoid interactions has 

been explored theoretically by Hassell & May [16]. They 

demonstrated that the greater the value of mutual interference 

constant amongst the parasitoid of the different host ages helps 

in their dispersal which favor’s the area of interaction [33]. 

Therefore, interference is considered as a common behavioral 

phenomenon in the host parasitoid systems. It has also been 

observed that parasitoid accumulate in the area of higher host 

densities [37] and stays there for a longer period which adversely 

affects its searching efficiency [38]. 

The strong mutual interference constant amongst the 

parasitoids in different larval instars helps in their dispersal 

which favors' the area of interaction. The K- value of the 

parasitoid (Table-3, Fig-3) increases significantly with the 

increase of their own number resulting in the parasitisation of 

more hosts [21]. 

Both the area of discovery and K-value of the parasitoid C. 

chlorideae are maximum in the 2nd larval age followed by 3rd 

larval age, Ist larval age and 4th larval age. Due to the parasitoid 

C. chlorideae preferred 2nd instar larvae of the host H. armigera 
[39] because this stage in addition to having more food than first 

instars and quality of food resources emanates more host 

seeking stimulant. The large size of the host, hardness of the 

cuticle and defense mechanism of 3rd & 4th instar’s of the host 

was play an important role in the host stage preference by the 

parasitoid [40]. The host age significantly affects the area of 

discovery and K-value of the parasitoid at varied parasitoid and 

host density. 

The attraction of the female parasitoid to the host is mainly due 

to odour of the host [41, 42]. The chemical Stimuli (kairomones) 

stimulate the host seeking response of the parasitoid, thus play 

a significant role in host location and has acceptance by the 

parasitoid [43, 44]. Kairomones affect the behavior of the 

parasitoid in at least three different ways: (1) by the activation 

of searching for hosts (2) through retention of the parasitoid in 

the target area and (3) by improving the egg distribution of the 

parasitoid [45]. 

As the host density increases both the area of discovery (Table-

2, Fig-2) and K- value (Table-4, Fig-4) increases up to 16 hosts, 

over that limit they decrease. This decrease is slow up to 32 

hosts there after it gains a momentum. This may be due to 

increase in the behavioral interactions caused by the increased 

host density [46], the effect of increase in the handling time [15], 

less egg supply [47] and/ or fatigue of the parasitoid [48]. Further 
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any parasitoid that parasitizes more hosts for a given host 

density must produce a higher value of area of discovery as 

illustrated by the rising curve in Fig-2. The subsequent decline 

in the curve is possibly due to over time spent by the parasitoid 

in the area of higher host density.  

The result discussed so for reveal that C. chlorideae is a 

promising bio-control agent and it can effectively be used 

against H. armigera by its release as it has a high searching 

efficiency. The searching efficiency and killing power was 

maximum in 2nd instars than other instars. Therefore, it is 

recommended that lesser number of parasitoids may be 

released for young hosts is better than old hosts at any 

recommended site for control purposes. 
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