
Journal of Advanced Education and Sciences 2021; 1(1):70-77  ISSN NO: 2583-2360 

www.dzarc.com/education Page | 70 

  
 

 

A cross-platform data mart synchronization model for high availability 

in dual-cloud architectures 
 

Babawale Patrick Okare1, Tope David Aduloju2, Olanrewaju Oluwaseun Ajayi3, Okeoma Onunka4 and 

Linda Azah5 
1 Infor-Tech Limited Aberdeen, UK 

2 Toju Africa, Nigeria 
3 Independent Researcher, Reading, United Kingdom 

4 Nigerian Institute of Leather and Science Technology Zaria, Kaduna, Nigeria 

5 Vodacom Business Nigeria [ISP], Ikoyi, Lagos, Nigeria 

Correspondence Author: Babawale Patrick Okare 

Received 13 Apr 2021; Accepted 7 June 2021; Published 21 June 2021 

DOI: https://doi.org/10.64171/JAES.1.1.70-77 

 

Abstract 

In the evolving landscape of enterprise data management, dual-cloud architectures have become a strategic choice to enhance 

redundancy, compliance, and vendor flexibility. However, ensuring high availability and consistent data synchronization across 

heterogeneous cloud platforms poses significant technical challenges, particularly for distributed data marts supporting critical 

analytical workloads. This paper presents a comprehensive, platform-agnostic synchronization model designed to address these 

challenges by harmonizing disparate storage engines, replication protocols, and metadata schemes. The proposed layered 

architecture incorporates real-time Change Data Capture mechanisms, bidirectional synchronization logic, and advanced conflict 

resolution strategies to maintain near-real-time data consistency. Embedded monitoring, automated recovery workflows, and 

governance controls further strengthen system reliability and compliance. The model facilitates seamless failover and resilience 

against cloud-specific outages and regional failures, while optimizing operational efficiency through incremental sync and smart 

batching. By bridging theoretical foundations with practical implementation considerations, this work advances the state of cross-

cloud data mart synchronization and supports modern multi-cloud data strategies. Future research directions include AI-enhanced 

conflict resolution and empirical validation of synchronization performance, promising to extend the model’s applicability and 

robustness in dynamic data environments. 
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1. Introduction 

1.1 Background  

The adoption of multi-cloud strategies has become a defining 

trend among enterprises aiming to optimize costs, enhance 

fault tolerance, and avoid vendor lock-in [1, 2]. In parallel, data 

marts have emerged as essential components for departmental 

and line-of-business analytics, offering tailored, performance-

optimized data stores to meet diverse user needs [3, 4]. These 

marts enable decentralized data access, improved query 

responsiveness, and specialized data governance. However, as 

organizations distribute their workloads across two or more 

cloud platforms, ensuring data availability and synchronization 

becomes increasingly complex [5-7]. Dual-cloud architectures, 

such as combinations of AWS and Azure, or GCP and Oracle 

Cloud, pose unique challenges in harmonizing data marts, 

especially when maintaining consistent and timely data across 

different geographic regions and infrastructure environments 

[8, 9]. 

Availability, consistency, and latency are fundamental 

concerns in these dual-cloud settings. Ensuring that users 

access reliable and up-to-date data across clouds is critical for 

business continuity, decision-making, and regulatory 

compliance. Variations in network latency, disparate storage 

models, and differences in security policies exacerbate 

synchronization challenges [10, 11]. Consequently, the concept 

of synchronized data marts arises as a robust solution, enabling 

fault-tolerant, near-real-time replication and alignment of data. 

This synchronization ensures continuous availability, reduces 

downtime, and supports resilient analytical workflows that are 

not bound by the limitations of a single cloud provider [12, 13]. 

Synchronized data marts also support disaster recovery and 

geo-redundancy by creating mirrored data environments across 

clouds. This multi-cloud mirroring protects against platform-

specific outages or regional failures and enhances the 

scalability of analytical operations. Given the growing reliance 

on analytics-driven strategies, building reliable cross-cloud 

synchronization mechanisms is paramount for organizations 

seeking agility, robustness, and uninterrupted access to critical 

data assets. 

 

1.2 Problem Statement 

Despite the strategic advantages of multi-cloud deployments, 

maintaining real-time consistency across cloud-specific data 
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marts remains a formidable challenge. Each cloud provider 

offers proprietary storage engines, replication protocols, and 

metadata management systems, creating a heterogeneous 

environment that complicates seamless data synchronization 

[14]. This heterogeneity introduces incompatibilities at 

multiple layers, ranging from differing data formats and 

schema evolution mechanisms to inconsistent transactional 

guarantees and latency profiles. These incompatibilities hinder 

the ability to synchronize data marts efficiently and reliably in 

near real time [15, 16]. 

Existing solutions often rely on vendor-specific replication 

tools or batch synchronization processes that fail to address the 

dynamic needs of modern analytics. Many current approaches 

lack the flexibility to handle bidirectional synchronization, 

conflict resolution, or tuning of consistency guarantees, 

especially in environments where data changes rapidly [17, 

18]. Additionally, metadata and lineage information are 

frequently siloed within individual clouds, impeding effective 

cross-platform governance and auditability. The lack of unified 

synchronization frameworks that abstract away cloud-specific 

peculiarities creates operational complexity and increases the 

risk of data drift, stale reports, and compliance violations [19-

21]. 

This gap in standardized, platform-agnostic synchronization 

models for cross-cloud data marts limits enterprises’ ability to 

fully realize the benefits of multi-cloud resilience and 

availability. There is a pressing need for frameworks that not 

only bridge storage and protocol differences but also provide 

robust monitoring, conflict management, and recovery 

capabilities. Addressing these challenges would enable 

enterprises to synchronize data marts consistently and 

efficiently, ensuring dependable analytics regardless of the 

underlying cloud infrastructure. 

 

1.3 Objectives 

This paper aims to develop a cross-platform synchronization 

model that guarantees high availability and data consistency for 

data marts distributed across dual-cloud architectures. The 

primary objective is to design an architectural framework 

capable of harmonizing disparate cloud storage engines, 

replication mechanisms, and metadata models, thereby 

enabling fault-tolerant, near-real-time data synchronization. 

This framework seeks to support both event-driven and batch 

synchronization strategies, accommodating the diverse latency 

and consistency requirements typical of analytical workloads. 

The paper’s core contributions include a layered architectural 

design that encapsulates ingestion, staging, synchronization, 

orchestration, and governance layers, each addressing specific 

challenges inherent to dual-cloud synchronization. The model 

emphasizes mechanisms for conflict resolution, metadata 

harmonization, and failover readiness, ensuring operational 

continuity even amid cloud-specific service disruptions. By 

integrating monitoring and recovery workflows, the framework 

supports proactive management and auditability. 

Anticipated benefits of the proposed model encompass 

improved failover readiness and minimized downtime through 

automated synchronization and recovery. It enables near-real-

time alignment of data marts, facilitating consistent analytics 

and compliance across platforms. This work not only 

contributes a theoretical model but also provides a practical 

blueprint for enterprises pursuing resilient multi-cloud data 

architectures that balance availability, performance, and 

governance. 

 

2. Conceptual and Technological Foundations 

2.1 Data Marts and Analytical Workloads 

Data marts are specialized, subject-oriented repositories 

designed to support focused analytical workloads within 

organizations [22, 23]. Unlike enterprise-wide data 

warehouses, data marts decentralize analytics by providing 

tailored datasets optimized for specific business units or 

domains such as sales, marketing, or finance. This 

decentralization enhances query performance and enables 

more agile, contextualized decision-making by delivering 

domain-relevant data directly to stakeholders [24, 25]. 

Typical analytical workloads on data marts involve complex 

queries, aggregations, and trend analyses that demand low 

latency and high availability. Timely access to accurate data is 

critical, as many business decisions hinge on up-to-date 

insights. As these workloads increase in volume and 

complexity, ensuring that data marts reflect the latest data 

states becomes a significant operational challenge [26, 27]. 

In multi-cloud and geo-distributed environments, data marts 

often contain partitioned datasets spread across regions or 

platforms to optimize local access and comply with data 

residency regulations. However, this distribution introduces 

latency challenges and complicates synchronization efforts 

[28, 29]. Delays in data replication can cause inconsistent 

query results across marts, undermining trust in analytics. 

Consequently, maintaining data consistency and minimizing 

synchronization latency are paramount to supporting effective, 

high-availability analytical services across organizational 

boundaries [30-32]. 

 

2.2 Dual-Cloud Architecture Characteristics 

Dual-cloud deployments involve leveraging two distinct cloud 

service providers simultaneously, such as AWS paired with 

Azure or GCP combined with Oracle Cloud Infrastructure [33, 

34]. Organizations pursue dual-cloud architectures primarily to 

enhance redundancy and fault tolerance, mitigate vendor lock-

in risks, and meet diverse regulatory or compliance 

requirements that may mandate data locality or separation of 

duties [35, 36]. 

Each cloud platform presents unique compute and storage 

paradigms. For example, AWS offers S3 for object storage, 

while Azure provides Blob Storage, each with different APIs, 

security models, and performance characteristics. Similarly, 

identity and access management (IAM) differ across providers, 

requiring federated identity solutions or custom mappings to 

enable seamless cross-cloud authentication and authorization 

[37, 38]. 

Networking between clouds introduces additional complexities 

such as varied latency profiles, bandwidth constraints, and 

security policies. Identity federation mechanisms and API 
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gateways become essential components, enabling secure, 

controlled access to services and data across the disparate 

platforms. These architectural variations must be carefully 

accounted for when designing synchronization models to 

ensure seamless interoperability, secure data flow, and 

consistent policy enforcement throughout the dual-cloud 

ecosystem [39, 40]. 

 

2.3 Synchronization Models in Distributed Systems 

Synchronization in distributed systems revolves around 

ensuring data consistency, integrity, and availability across 

multiple nodes or platforms [41, 42]. Core concepts include 

eventual consistency, where all replicas converge over time; 

conflict resolution, which addresses inconsistencies arising 

from concurrent updates; and replication topologies, defining 

how data flows between sources and targets (e.g., master-slave, 

peer-to-peer) [43-45]. 

Different synchronization mechanisms serve various needs. 

Log-based replication captures changes as transaction logs, 

replaying them on target systems for fidelity. Event-driven 

synchronization uses messaging or event streams to propagate 

changes in near real-time, optimizing latency [46]. Delta-based 

approaches transmit only changed data segments to minimize 

bandwidth. Checkpointing periodically saves consistent data 

snapshots to facilitate recovery and reduce sync overhead [47, 

48]. 

To effectively manage cross-platform data marts, 

synchronization layers must be platform-agnostic, abstracting 

away cloud-specific details while providing unified 

consistency guarantees and operational controls [49-51]. This 

abstraction allows synchronization logic to operate 

independently of underlying storage engines or APIs, 

improving portability, maintainability, and extensibility across 

diverse cloud environments. Building such a layer requires 

harmonizing metadata, conflict resolution policies, and 

transport mechanisms to deliver reliable, near-real-time data 

consistency in complex dual-cloud architectures [52, 53].  

 

3. Proposed Synchronization Model 

3.1 Architectural Overview and Design Layers 

The proposed synchronization model adopts a layered 

architecture to systematically manage the complexities of 

cross-platform data mart synchronization in dual-cloud 

environments [54, 55]. The architecture is composed of five 

core layers: ingestion, staging, synchronization orchestrator, 

data marts, and replication controller. The ingestion layer 

interfaces with data sources and pipelines, capturing real-time 

and batch changes from operational databases or upstream 

systems. Data then moves into the staging layer, where raw 

data is temporarily held and pre-processed for consistency 

checks, schema alignment, and metadata enrichment [56-58]. 

At the heart lies the synchronization orchestrator, responsible 

for coordinating data transfer, applying business rules, and 

triggering replication workflows. This layer interacts closely 

with message queues and schema registries that store versioned 

data models, ensuring that schema changes are harmonized 

across clouds. A metadata harmonizer component aligns 

differing metadata formats and nomenclature between 

platforms, enabling seamless data interpretation and 

transformation [59-61]. 

The final two layers represent the data marts themselves, 

targeted analytical repositories on each cloud, and the 

replication controller, which manages connectivity, data flow 

control, and error handling between them. Cross-cloud 

connectivity modules abstract cloud-specific APIs and network 

protocols, providing a uniform interface for replication tasks. 

This abstraction layer enables portability and adaptability, 

facilitating synchronization across heterogeneous storage 

systems without compromising consistency or performance 

[62, 63]. 

 

3.2 Synchronization Mechanisms and Logic 

Synchronization within this model employs a bidirectional 

logic to support seamless, near-real-time data consistency 

between data marts. At its core is Change Data Capture (CDC), 

a technique that captures and records all data modifications at 

the source, including inserts, updates, and deletions. These 

changes trigger synchronization events, enabling the 

replication process to propagate updates incrementally and 

efficiently. Coupled with event-driven triggers, this 

mechanism reduces latency and minimizes unnecessary data 

transfers [64-66]. 

Given the inherent trade-offs in distributed systems, the model 

supports multiple consistency paradigms tailored to analytical 

workloads. While strong consistency ensures identical data 

views across marts, it may introduce latency. Alternatively, 

eventual consistency allows temporary divergence with 

guaranteed convergence, optimizing throughput. A tunable 

consistency approach enables stakeholders to balance 

strictness against performance based on specific use cases [67-

69]. 

To resolve synchronization conflicts, arising when concurrent 

updates occur, the model incorporates strategies such as 

versioning, which tracks data revisions; timestamping, which 

orders changes chronologically; and source-of-truth heuristics, 

which designate authoritative systems for specific data 

domains. These mechanisms collectively ensure that 

synchronized data marts maintain integrity and accuracy even 

amid complex multi-cloud updates [70, 71]. 

 

3.3 Monitoring, Recovery, and Governance 

Robust monitoring and observability are integral to the model, 

enabling continuous insight into synchronization health and 

performance. Embedded metric collectors gather data on 

replication latency, throughput, error rates, and resource 

utilization. These metrics feed into alert managers and sync 

state dashboards, providing real-time visibility to operations 

teams and enabling proactive issue detection [72-74]. 

To address failures such as transfer interruptions or schema 

mismatches, the model incorporates auto-recovery workflows. 

Upon detection of anomalies, automated processes attempt 

retries, schema reconciliation, or data rollbacks without 

requiring manual intervention. These workflows reduce 

downtime and ensure synchronization continuity across clouds 

[75, 76]. 
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Governance is embedded through compliance controls like 

data tagging for lineage and sensitivity classification, audit 

logging for tracking changes and user actions, and Service 

Level Agreement (SLA) monitoring to enforce operational 

thresholds. Together, these governance measures promote 

transparency, accountability, and adherence to regulatory 

requirements, which are crucial for enterprise adoption in 

sensitive or regulated industries [77, 78]. 

 

4. Strategic and Operational Implications 

4.1 High Availability and Fault Tolerance 

The proposed synchronization model fundamentally enhances 

high availability by minimizing downtime and enabling 

continuous data accessibility across dual-cloud platforms [79, 

80]. It supports hot-standby configurations, whereby data marts 

on one cloud can immediately take over analytical workloads 

should the counterpart fail or become unreachable. This 

seamless failover capability is critical in maintaining 

uninterrupted business operations and avoiding costly analytics 

outages [81, 82]. 

Failover handling is orchestrated using dynamic DNS routing, 

which reroutes data requests to the available cloud environment 

in real time. The model actively mitigates replication lag 

through incremental synchronization and prioritization of 

critical data streams, ensuring that failover environments are as 

up-to-date as possible. This reduces the risk of stale data during 

switchovers and sustains decision-making integrity [83-85]. 

The architecture is designed to be resilient not only to platform-

specific outages but also to regional or zone-level failures, 

which are increasingly common in cloud environments. By 

distributing data marts across distinct geographic and cloud 

fault domains, the model guarantees that localized service 

degradations do not cascade into system-wide disruptions. This 

multi-layered resilience equips organizations with robust 

protection against diverse failure scenarios [86, 87]. 

 

4.2 Operational Efficiency and Consistency 

Operationally, the model drives significant efficiency gains by 

automating synchronization tasks that traditionally required 

manual oversight or batch processing. Reducing the need for 

manual sync jobs and ad hoc data patching frees engineering 

resources and minimizes human errors. Automation also 

streamlines schema reconciliation and conflict resolution, 

accelerating issue resolution and reducing operational 

overhead [88, 89]. 

The model promotes data consistency across business 

intelligence platforms and federated query systems by 

maintaining synchronized, harmonized datasets in all data 

marts. This consistency ensures that analytics teams, regardless 

of cloud or region, operate on the same trusted data, eliminating 

discrepancies that can skew insights or lead to conflicting 

conclusions [90-92]. 

Latency improvements are achieved through incremental 

synchronization techniques that transmit only changed data 

segments rather than full datasets, minimizing bandwidth 

usage and replication delays. Smart batching mechanisms 

further optimize resource utilization by dynamically grouping 

changes based on network conditions and workload priorities. 

Together, these techniques support near-real-time data 

availability without compromising system performance [93-

95]. 

 

4.3 Compliance, Auditability, and Cross-Team 

Collaboration 

Compliance and auditability are essential in multi-cloud data 

environments, particularly where sensitive or regulated 

information is involved. The synchronization model 

incorporates robust data lineage tracking, which records the 

origin, transformation, and movement of data across clouds. 

This traceability provides transparency for auditors and 

regulators, simplifying compliance reporting and forensic 

investigations [64, 96, 97]. 

Unified data tagging and logging frameworks enable consistent 

classification of sensitive data elements according to regulatory 

standards such as HIPAA and GDPR. These controls ensure 

that privacy and security policies are uniformly enforced across 

platforms, mitigating compliance risks in distributed data marts 

[98, 99]. 

Furthermore, the model fosters cross-team collaboration by 

providing shared dashboards and governance layers accessible 

to data engineers, security officers, and business users alike. 

These tools facilitate transparent access management, change 

tracking, and operational insights, bridging organizational 

silos. By cultivating a culture of shared accountability and 

visibility, the model supports effective governance and 

accelerates the resolution of synchronization issues [100-102]. 

 

5. Conclusion 

In today’s increasingly complex data landscape, the need for 

robust, platform-agnostic synchronization models in dual-

cloud environments is undeniable. This paper has 

demonstrated how distributed data marts, critical to 

organizational analytics, face persistent challenges related to 

availability, data consistency, and operational complexity 

across heterogeneous cloud platforms. The proposed 

synchronization model offers a comprehensive framework 

designed to overcome these challenges by providing a layered, 

abstraction-driven architecture that harmonizes cloud-specific 

storage, replication protocols, and metadata. 

By supporting bidirectional, near-real-time synchronization 

and implementing conflict resolution mechanisms tailored to 

analytical workloads, the model effectively addresses critical 

concerns around data freshness and integrity. Its design enables 

enterprises to achieve high availability and fault tolerance, 

ensuring seamless failover and resiliency against cloud or 

regional failures. Furthermore, integrated observability and 

governance layers enhance operational clarity, compliance 

adherence, and auditability. Overall, the model aligns closely 

with the demands of modern data strategies focused on multi-

cloud agility, resilience, and consistent analytics delivery. 

The theoretical contribution of this work lies in its articulation 

of a platform-neutral synchronization framework that 

reconciles the disparate characteristics of cloud-native data 

stores into a unified operational model. It advances the field of 
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cloud-native data architecture by providing an abstract yet 

implementable blueprint for cross-platform data mart 

synchronization, a topic that remains underexplored in 

academic literature. 

Practically, the model serves as a valuable guide for enterprises 

seeking to enhance their data redundancy and regulatory 

diversification strategies by leveraging multiple cloud vendors. 

It facilitates seamless data replication and governance across 

clouds, which is crucial for organizations dealing with stringent 

compliance requirements and complex analytics demands. The 

model’s integration with DevOps and DataOps principles 

promotes automation, continuous monitoring, and rapid 

recovery, making it a strong candidate for adoption within 

contemporary cloud operations and analytics workflows. 

Several promising avenues exist to extend this foundational 

model. Integration with real-time streaming data sources can 

enable synchronization of rapidly changing datasets and 

support more dynamic analytics scenarios. Synchronization of 

machine learning feature stores across clouds presents another 

emerging use case, requiring specialized handling of feature 

freshness and consistency. 

The incorporation of artificial intelligence techniques to assist 

in conflict resolution and predict synchronization bottlenecks 

holds potential to further optimize system performance and 

reduce manual interventions. Empirical studies evaluating 

synchronization latency and Recovery Time Objectives 

(RTOs) would provide critical validation and refinement, 

enabling better quantification of model efficacy under diverse 

operational conditions. Such future work will deepen 

understanding and drive continuous innovation in multi-cloud 

data synchronization strategies. 
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