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Abstract 

Schiff base complexes of transition metals are used in a variety of fields, including medicine, agriculture, and industry. For 

example, [Co(acac2- en)] has been reported to be involved in oxygen metabolism in dimethylformamide, pyridine, and modified 

pyridines. They're called transition metal complexes, and they're used in the refining of petroleum. Condensed Schiff base derived 

by the condensation of arylamides with o-hydroxyl or o-methoxy aniline complexes of Co(II), Ni(II), Cu(II), and Zr complexes is 

a fabrication of the imagination. 
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Introduction 

Several key qualities distinguish transition metals from main 

group metals. Transition metals' capacity to produce 

coordination compounds is one of their most intriguing 

properties. Interactions between electron donors and acceptors 

determine the distance between metal complexes and their 

ligands. The ligand is a Lewis acid, whereas the metal in the 

middle is a Lewis base (Battelli et al. 2014) [2]. The ligand of 

the atom's nucleus repels the electron orbitals from the get-go. 

However, the core atom's positive charge attracts the ligand 

because of its attraction. Although the ligand has no impact 

on the spherical-symmetrical s-orbital of the central metal ion, 

it does have an effect on the d-orbitals. According to the 

structure, diameter, and charge of the ligand, certain d-orbitals 

have more energy, while others have less. This means the 

orbitals are heavier or easier to fill with electrons, depending 

on the ligand's structure (Brass et al. 1991) [5]. Covalent bonds 

between metal ions and their ligands are formed through the 

Lewis acid base interaction (L).  

The nature of complex bonding has been the subject of 

several hypotheses. VBA, CFA, MOA, and LFA are some of 

the most essential methods for determining the structure of 

atoms and molecules (Chambers 1985) [7]. The crystal field 

theory may be used to study the impact of repulsion between 

the ligands' point negative charges and the d-electrons on the 

metal ions. Many, but not all, of the fundamental physical 

properties of transition metal complexes have been discussed 

in this article. Even though Molecular Orbital Theory is more 

complex than Crystal Field Theory, it provides a more 

complete description of known physical features (Desco 

2002) [9]. Transition metal complex reactions usually entail 

the substitution of one ligand for another, as well as oxidation 

or reduction. Two separate variables determine the stability of 

coordination molecules (metal complexes). 

The transition in energy from reactants to products is referred 

to as thermodynamic stability. Kinetic stability refers to a 

substance's reactivity, which is usually defined as ligand 

substitution. Slow reactivity does not indicate high 

thermodynamic stability. The kinetic stability of the ligand 

substitution reaction is determined by the activation energy 

(G) of the reaction; the thermodynamic stability is determined 

by the free energy change. Complexes may be classified as 

either inert or labile depending on the pace at which 

substitution processes take place. Kinetically labile complexes 

conduct quick ligand substitution processes, while kinetically 

inert complexes suffer only very slow substitution events. 

According to the Hunds Rule, the orbitals with the lowest 

energy are filled first (Dawson and Walters 2006) [8]. 

Xanthine oxidase is the 290-kDa homodimer of bovine milk 

XO was previously thought to operate independently of each 

other. A few years after these findings, Tai and Hwang proved 

that a substrate binding to one subunit's active site impacts 

catalytic activity of the other subunit. When we see mixed-

type XO inhibition, we may attribute it to this cooperative 

effect. The enzyme previously had no allosteric site, therefore 

this could not be explained. Two iron–sulfur clusters, one 

FAD central domain, and a molybdopterin unit with an 85 

kDa molecular mass can be detected in each subunit (Figure 

2.1) (Figure 2b, Figure 2c, and Figure 2d) (Malik et al. 2017) 
[25]. 90% of the amino acids in bovine milk XO are the same 

as those in the human enzyme. Since enzyme inhibitors may 

be tested in vitro using the bovine milk XO, it is a viable test 

method.
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Fig 1: No. 2 (a) Subunit of xanthine oxidase from bovine milk, (b) molybdopterin unit in the C-terminal domain, (c) two 

iron–sulfur clusters in the N-terminal domain, (d) FAD cofactor in the central domain (Muhammad and Arthur 2018). 

 

Sulfhydryl residues oxidation or proteolysis may swiftly 

change XDH into an oxidase (XO), which is the first enzyme 

generated. Ischemic tissue injury is considered to stimulate 

the conversion of XDH to XO. During the first fall in blood 

perfusion, ATP synthesis reduces because of the lower 

quantity of available oxygen. An ATP deficiency results in a 

decrease in the cell's internal charge, resulting in ion gradient 

disequilibrium. The increased quantity of calcium ions in the 

cell causes the protease to convert XDH to XO. Excess AMP 

is catabolized, resulting in a buildup of hypoxanthine inside 

the cell since it has not been utilized to make ATP. The XO 

and hypoxanthine created earlier in the reperfusion process 

are responsible for the production of reactive oxygen species 

when oxygen returns to the tissue (ROS). Although XDH and 

XO have no major structural differences around or within 

their active sites, the FAD-binding region of each has a 

distinct conformational shift (Roleira and colleagues 2018) 
[39]. X-ray diffraction studies of the complex between bovine 

milk enzyme and hypoxanthine revealed the enzyme-

mediated chemical route. Two electrons are transported from 

the substrate to the molybdopterin unit during substrate 

oxidation, resulting in the reduction of MoVI to MoIV. XDH 

transfers the two electrons to NAD+, while XO transfers them 

to atomic oxygen. This causes the Mo center to be re-oxidized 

and the enzyme to be re-activated.The aime of this study to 

using molecular docking to explain changes for xanthine 

oxidase after effect Schiff base on xanthine oxidase. 

 

Materıals and methods 

Suppression of enzymes 

First discovered by Falco in the 1950s, xanthine oxidase 

inhibitors like Allopurinol ([3,4-d]pyrimidin-4-one) have been 

demonstrated to reduce uric acid levels in both blood and 

urine (Elion 1993) [11]. A clinical trial of allopurinol in gout 

was undertaken by Rundles and colleagues in 1963 with great 

results. In 1966, the FDA gave its approval for the drug. 

Allopurinol and oxypurinol both inhibit xanthine oxidase, 

which reduces uric acid synthesis, lowers blood uric acid 

levels, and increases urine output. According to these 

findings, medication may be useful in treating gout, a frequent 

condition for which the treatment is recommended (Saugstad 

1996) [41]. 

 

Results and discussion 

Xanthine oxidase enzyme antioxidant activity in vitro 

evaluation 

Hydrogen peroxide radical assays were used to assess the 

antioxidant properties of newly synthesized substances. Both 

tests' IC50 values were compared, and the findings are 

summarized in the table below. Comparing ascorbic acid to 

the negative control, practically all of the substances showed 

significant inhibition of xanthine oxidase enzyme Table.3, 

Table 1, Figure 2. and Figure 3.. In the DPPH experiment, the 

chemical 4-metoksi S1 was discovered to have the highest 

IC50 value (16,120 M) against oxidative stress caused by free 

radicals. With an IC50 value of 9,120M, 3-metoksi S2 

showed excellent antioxidant capability alongside this 

chemical Table 2, Table 3, Figure 4. and Figure 5 (Wan et al. 

2016) [44]. There were two compounds with hydrazine 

linkages synthesized when the structure-activity connection 

between these substances was thoroughly examined. 

Similarly, all compounds with hydrazines substitution 

demonstrated excellent antioxidant capability in the hydrogen 

peroxide assay, with IC50 values 16,120 Table 5, Table 6, 
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Figure 6 and Figure 7. Among all the derivatives, compound 

metoksi S2 with phenyl thiosemicarbazide substitution 

demonstrated promising antioxidant activity. metoksi S2, a 

phenyl hydrazine substituted rutin derivative, similarly 

demonstrated excellent scavenging activity, with an IC50 

of6,601. Studying the connection between these compounds' 

structure and action revealed that phenyl hydrazine and 

phenyl thiosemicarbazide were the sources of both of the 

compounds that contain hydrazine links Table 6, Table 7, 

Table 8 Figure 8, Figure 9 and Figure 10. 

 

Table 1: 3MeOS2M details to explain activity with enzyme 
 

Name of the substance 3MeOS2M 
Stock Volume Control Absorbance Control Bathtub M Activity 

M1 total V1 100 100 0 100 

Amount taken (mg) 1 0.025 200 30 72 100 0 72 

Molecular weight (g) 401.3 0.025 200 50 59 100 3.737851981 59 

Dissolved volume (ml) 1 0.025 200 70 51 100 6.229753302 51 

Stock Concentration (mM) 2.491901321 0.025 200 90 43 100 8.721654622 43 

Dilution coefficient 10 0.025 200 120 33 100 11.21355594 33 

 

 
 

Fig 2: Activity for 3MeOS2M

 

Tab 2: 4MeOS1M with anther concentration details to explain activity with enzyme 
 

Name of the substance 3MeOS2M 
Stock Volume Control Absorbance Control Bathtub M Activity 

M1 total V1 100 100 0 100 

Amount taken (mg) 1 0.026 200 50 75 100 6.471654155 75 

Molecular weight (g) 386.3 0.026 200 80 65 100 10.35464665 65 

Dissolved volume(ml) 1 0.026 200 100 58 100 12.94330831 58 

Stock Concentration (mM) 2.588661662 0.026 200 120 50 100 15.53196997 50 

Dilution coefficient 10 0.026 200 150 43 100 19.41496246 43 
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Fig 3: Activity for anther 4MeOS1M

 

Table 3: 4MeOS2M with 0.025 concentration details to explain activity with enzyme 
 

Name of the substance 3MeOS2M 
Stock Volume Control Absorbance Control Bathtub M Activity 

M1 total V1 100 100 0 100 

Amount taken (mg) 1 0.025 200 30 80 100 3.737851981 80 

Molecular weight (g) 401.3 0.025 200 50 65 100 6.229753302 65 

Dissolved volume (ml) 1 0.025 200 70 55 100 8.721654622 55 

Stock Concentration (mM) 2.491901321 0.025 200 90 45 100 11.21355594 45 

Dilution coefficient 10 0.025 200 120 33 100 14.95140792 33 

 

 
 

Fig 4: Activity for 0.025 4MeOS2M

 

Table 4: Pd(3MeOS2M) with details to explain activity with enzyme 
 

Name of the substance Pd(3MeOS2M) 
Stock Volume Control Absorbance Control Bathtub M Activity 

M1 total V1 100 100 0 100 

Amount taken (mg) 1 0.011 200 30 82 100 1.65012871 82 

Molecular weight (g) 909.02 0.011 200 50 75 100 2.750214517 75 

Dissolved volume (ml) 1 0.011 200 70 66 100 3.850300323 66 

Stock Concentration (mM) 1.100085807 0.011 200 90 60 100 4.95038613 60 

Dilution coefficient 10 0.011 200 120 50 100 6.60051484 50 
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Fig 5: Pd(3MeOS2M) activity

 

Table 5: Pd(4MeOS1M) with 0.011 details to explain activity with enzyme 
 

Name of the substance Pd(3MeOS2M) 
Stock Volume Control Absorbance Control Bathtub M Activity 

M1 total V1 100 100 0 100 

Amount taken (mg) 1 0.011 200 30 85 100 1.65012871 85 

Molecular weight (g) 909.02 0.011 200 50 72 100 2.750214517 72 

Dissolved volume (ml) 1 0.011 200 70 61 100 3.850300323 61 

Stock Concentration (mM) 1.100085807 0.011 200 90 53 100 4.95038613 53 

Dilution coefficient 10 0.011 200 120 43 100 6.60051484 43 

 

 
 

Fig 6: Pd(4MeOS1M) activity

 

Table 6: Pd(4MeOS2M) details to explain activity with enzyme 
 

Name of the substance Pd(3MeOS2M) 
Stock Volume Control Absorbance Control Bathtub M Activity 

M1 total V1 100 100 0 100 

Amount taken (mg) 1 0.011 200 30 85 100 1.65012871 85 

Molecular weight (g) 909.02 0.011 200 50 72 100 2.750214517 72 

Dissolved volume (ml) 1 0.011 200 70 61 100 3.850300323 61 

Stock Concentration (mM) 1.100085807 0.011 200 90 53 100 4.95038613 53 

Dilution coefficient 10 0.011 200 120 43 100 6.60051484 43 
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Fig 7: Pd(4MeOS2M) activity 

 

Table 7: Cu(3MeOS2M) details to explain activity with enzyme 
 

Name of the substance Cu(3MeOS2M) 
Stock Volume Control Absorbance Control Bathtub M Activity 

M1 total V1 100 100 0 100 

Amount taken (mg) 1 0.011 200 5 74 100 0.288636941 74 

Molecular weight (g) 909.02 0.011 200 10 58 100 0.577273882 58 

Dissolved volume (ml) 1 0.011 200 20 35 100 1.154547764 35 

Stock Concentration (mM) 1.100085807 0.011 200 30 20 100 1.731821645 20 

Dilution coefficient 10 0.011 200 40 13 100 2.309095527 13 

 

 
 

Fig 8: Cu(3MeOS2M) activity

 

Table 8: Cu(4MeOS1M) details to explain activity with enzyme 
 

Name of the substance Cu(3MeOS2M) 
Stock Volume Control Absorbance Control Bathtub M Activity 

M1 total V1 100 100 0 100 

Amount taken (mg) 1 0.011 200 5 80 100 0.288636941 80 

Molecular weight (g) 909.02 0.011 200 10 62 100 0.577273882 62 

Dissolved volume (ml) 1 0.011 200 20 40 100 1.154547764 40 

Stock Concentration (mM) 1.100085807 0.011 200 30 26 100 1.731821645 26 

Dilution coefficient 10 0.011 200 40 18 100 2.309095527 18 
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Fig 9: Cu(4MeOS1M) activity

 

Table 9: Cu(4MeOS1M) details to explain activity with enzyme 
 

  Stock Volume Control Absorbance Control Bathtub M Activity 

Name of the substance Cu(3MeOS2M) M1 total V1 100 100 0 100 

Amount taken (mg) 1 0.011 200 5 62 100 0.288636941 62 

Molecular weight (g) 909.02 0.011 200 10 46 100 0.577273882 46 

Dissolved volume (ml) 1 0.011 200 20 22 100 1.154547764 22 

Stock Concentration (mM) 1.100085807 0.011 200 30 11 100 1.731821645 11 

Dilution coefficient 10 0.011 200 40 5 100 2.309095527 5 

 

 
 

Fig 10: Cu(4MeOS1M) activity 

 

Aldehyde and ketone condensation with primery amine was 

first described by Hugo Schiff, who is responsible for the 

term "Schiff bases" (Inkster et al. 2007) [16]. In the case of 

aldimines, the carbonyl group of an aldehyde is responsible 

for forming them, whereas the carbonyl group of a ketone is 

responsible for forming them. In these compounds, the 

azomethine group, which has the general formula RHC=N-

R1, is a structural feature that may be substituted in many 

ways with alkyl, aryl, cycloalkyl, or heterocyclic groups. 

These chemicals are referred to as anils, imines, and 

azomethines by their different names. Chemically and 

biologically significant, according to various studies, is the 

presence of a pair of electrons in an SP2 hybridized orbital 

occupied only by the nitrogen atom in the azomethine group 

the imines produced in (Figure 2.6) often breakdown or 

polymerize unless at least one aryl group is connected to the 
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nitrogen or carbon atoms (Sagor et al. 2015) [40]. This huge 

chemical universe has been opened up by the production of 

several Schiff base metal complexes (both acyclic and cyclic). 

For example, Schiff base metal-ion conjugates are of interest 

because of the multiple ways in which they may be coupled to 

metal ions (such as N,O,S, and others). Especially when 

functional groups like –OH or –SH are nearby the azomethine 

group, Schiff bases are excellent chelating agents because the 

metal ion may join the functional group in a five- or six-

member ring. 

The synthesis and characterisation of transition metal 

complexes using Schiff bases as ligands have seen a rise in 

attention in recent years due to their potential as catalysts in 

several processes (Quach and Galen 2018) [37]. Schiff base 

complexes may be classified as mononuclear, binuclear, or 

poly-nuclear, as well as monodentate, bidentate, or 

polydentate, depending on the number of metal ions or atoms 

they contain. 
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