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Abstract 

The Surface is a branch of differential geometry that plays an important role in practical life. This study aimed to present the 

fundamental theorem of surface theory. We followed the historical and analytical mathematical, method by providing a general idea 

of surfaces, the orientation of surfaces, the fundamental theory of surfaces. We found the following some results. There exists an 

essentially unique surface with specified first and second fundamental forms is a profound result called the fundamental theorem of 

surface theory. 
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1. Introduction 

Differential geometry is a branch of geometry that means 

studying geometric shapes, primarily surfaces the major 

contribution to the field of differential geometry came in the 

eighteenth a century by Euler, who identified the basic vectors 

of surfaces and proved a set of important theorems. It was also 

the first detailed treatment of the theory of surfaces by Monge. 

The nineteenth century was the most important milestone in the 

development of mathematics in general and differential 

geometry in particular in 1827 Gauss reached a set of properties 

for surfaces that formed the internal or internal geometry of a 

surface.Since that time differential geometry has become an 

indepent branch of mathematics after it was just an application 

of mathematical analysis. Our object in this paper is to study 

the Concept of a Surface and We discussed in what sense, and 

when, it is possible to orient a surface. 

 

2. Concept of a surface 

Intuitively we think of a surface as a set of points in space 

which resembles a portion of a plane in the neighborhood of 

each of its points. This will be the case if the surface is the 

image of a sufficiently regular mapping of a set of points in the 

plane into 𝐸3. Since we want to apply the methods of calculus. 

We assume that the mapping of is at least of class 𝐶1. Also, in 

order to insure that the surface has a tangent plane at each point, 

we assume that the rank of the Jacobian matrix of the mapping 

is two at each point [7]. 

 

Definition (2.1): (Intuitive definition of surface) 

A surface is a subset of 1R3 such that each of its points has a 

neighborhood similar to a piece of a plane that bends smoothly 

and without self-intersections when bent in three-space [9]. 

 

Definition (2.2) 

A regular parametric representation of class 𝐶𝑚(𝑚 ≥ 1) of a 

set of points 𝑆 in 𝐹3 is a mapping 𝑋 = 𝐹(𝑢, 𝑣) of an open set 

𝑈 in the 𝑢, 𝑣 plane onto 𝑆 such that  

1. F is of class Cm in U.  

2. If (𝑒1, 𝑒2, 𝑒3) is basis in 𝐸3 and  

𝑓(𝑢, 𝑣) = 𝑓1(𝑢. 𝑣)𝑒1 + 𝑓2(𝑢. 𝑣)𝑒2 + 𝑓3(𝑢, 𝑣)𝑒3, then for all 

(𝑢. 𝑣) in U. 

rank =

(

 
 
 

𝜕𝑓1
𝜕𝑢

𝜕𝑓1
𝜕𝑣

𝜕𝑓2
𝜕𝑢

𝜕𝑓2
𝜕𝑣

𝜕𝑓3
𝜕𝑢

𝜕𝑓3
𝜕𝑣)

 
 
 

= 2 

We recall that 𝐹 is of class 𝐶𝑚 in 𝑈 if all partial derivative of 

𝑓 of order 𝑚 or less are continuous in U. [7] 

 

Example (2.3) 

The equation  

𝑥 = (𝑢 + 𝑣)𝑒1 + (𝑢 − 𝑣)𝑒2 + (𝑢
2 + 𝑣2)𝑒3 

defines a mapping of the 𝑢𝑣 plan ont the ellipetic paraboloid 

𝑥3 =
1

2
(𝑥1 + 𝑥2) shown in Fig No.1 cleanly 𝑥 has continuous 

partial derivatives of all orders. Also, for all (𝑢, 𝑣).  

|xu × xv| = |det (
e1 1 1
e2 1 −1
e3 2u 2v

)| =  [4 +  8 (u2 +

v2)] 
1
2⁄ ≠ 0  

 

 
 

Fig 1: Paraboloid 
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Thus 𝑥 is a regular parametric representation of the paraboloid 

of class 𝐶∞ [7]. 

 

3. Orientation of Surfaces 

We discussed in what sense, and when, it is possible to orient 

a surface. Intuitively, since every point 𝑝 of a regular surface 𝑠 

has a tangent plane 𝑇𝑝(𝑠), the choice of an orientation of 𝑇𝑝(𝑠) 

induces an orientation in a neighborhood of 𝑝, that is, a notion 

of positive movement along sufficiently small closed carves 

about each point of the neighborhood. If it is possible to make 

this choice for each 𝑝 ∈ 𝑠 so that in the intersection of any two 

neighborhoods the orientations coincide, then 𝑠 is said to be 

orientable. If this is not possible, 𝑠 is called nonorientable [6]. 

 

Definition (3.1) 

A regular surface 𝑆 is called orientable if it is possible to cerch 

it with a family of coordinate neighborhoods in such a way that 

if a point 𝑝 ∈ 𝑠 belongs to two neighborhoods of this family, 

then the change of coordinates has positive Jacobian at 𝑝. The 

choice of such a family is called on orientation of 𝑠, and 𝑠, in 

this case is called oriented if such a choice is not possible, the 

surface is called nonorientable.  

 

Example (3.2) 

A surface which is the graph of a differentiable function is an 

orientable surface. In fact, all surfaces which can be covered by 

one coordinate neighborhood are trivially orientable [6]. 

 

Example (3.3) 

The sphere is an orientable surface [6]. 

 

4. First Fundamental Form 

The first fundamental form, which it based on the metric, 

encompasses all the intrinsic information about the surface that 

a 2D inhabitant of the surface can obtain from measurements 

performed on the surface without appealing to an external 

dimension. In the old books, the first fundamental form may be 

la bled as the first fundamental quadratic form.  

The first fundamental form is of the length of an element of arc 

of a curve on a surface is a quadratic expression given by:  

𝐼𝑠 = (𝑑𝑠)2 = 𝑑𝑟. 𝑑𝑟 =  (
𝜕𝑟

𝜕𝑢𝛼
) . (

𝜕𝑟

𝜕𝑢𝛽
) 𝑑𝑢𝛼 = 𝑑𝑢𝛽 

= 𝐸𝛼𝐸𝛽𝑑𝑢
𝛼𝑑𝑢𝛽 = 𝑎𝛼𝛽𝑑𝑢

𝛼𝑑𝑢𝛽 

= 𝐸(𝑑𝑢′)2 + 2𝑓𝑑𝑢′𝑑𝑢2 + 𝐺(𝑑𝑢2)2 (1) 

Where 𝐸, 𝐹, 𝐺 which in general are continuous variable 

functions of the surface coordinates 𝑢′ and 𝑢2, are given by:  

𝐸 = 𝑎11 = 𝐸1. 𝐸1 = (
𝜕𝑟

𝜕𝑢1
) . (

∂r

𝜕𝑢1
) = 𝑔𝑖𝑗 (

∂𝑥𝑖

𝜕𝑢1
)(
∂𝑥𝑗

𝜕𝑢1
) 

𝐹 = 𝑎12 = 𝐸1. 𝐸2 = (
𝜕𝑟

𝜕𝑢1
) . (

∂r

𝜕𝑢2
) = 𝑔𝑖𝑗 (

∂𝑥𝑖

𝜕𝑢1
)(
∂𝑥𝑗

𝜕𝑢2
)

= 𝐸2𝐸1 = 𝑎21 

𝐺 = 𝑎22 = 𝐸2. 𝐸2 = (
𝜕𝑟

𝜕𝑢2
) . (

∂r

𝜕𝑢2
) = 𝑔𝑖𝑗 (

∂𝑥𝑖

𝜕𝑢2
)(
∂𝑥𝑗

𝜕𝑢2
) 

Where the indexed 𝑎 are the elements of the surface covariant 

metric tensor, the indexed 𝑥 are the general coordinates of the 

enveloping space and 𝑔𝑖𝑗 is its covariant metric tensor.  

For a flat space with a Cartesian coordinate system 𝑥𝑖, the 

space metric is 𝑔𝑖𝑗 = 𝛿𝑖𝑗 and hence the above equations 

become:  

𝐸 = (
∂𝑥𝑖

𝜕𝑢1
)(
∂𝑥𝑗

𝜕𝑢1
) 

𝐹 = (
∂𝑥𝑖

𝜕𝑢1
)(
∂𝑥𝑗

𝜕𝑢2
) 

𝐺 = (
∂𝑥𝑖

𝜕𝑢2
)(
∂𝑥𝑗

𝜕𝑢2
) 

The first fundamental form can be cast the following matrix 

from:  

𝐼𝑠 = [𝑑𝑢
1 𝑑𝑢2] [

𝐸1
𝐸2
] . [𝐸1 𝐸2] [

𝑑𝑢1

𝑑𝑢2
] 

 = [𝑑𝑢1 𝑑𝑢2] [
𝐸1. 𝐸1 𝐸1. 𝐸2
𝐸2. 𝐸1 𝐸2. 𝐸2

] [𝑑𝑢
1

𝑑𝑢2
] 

= [𝑑𝑢1 𝑑𝑢2] [
𝐸 𝐹
𝐹 𝐺

] [𝑑𝑢
1

𝑑𝑢2
] 

= [𝑑𝑢1 𝑑𝑢2] [
𝑎11 𝑎12
𝑎21 𝑎22

] [𝑑𝑢
1

𝑑𝑢2
] = 𝑉 𝐼𝑠𝑉

𝑇  

      (2) 

Where 𝑣 is a direction vector, 𝑣𝑇 is its transpose, and 𝐼𝑠 is the 

first fundamental form tensor which is equal to the surface 

covariant metric tensor. Hence, the matrix associated with the 

first fundamental form is the covariant metric tensor of the 

surface [11].  

 

Example (4.1)  

Consider a surface which is the graph of the function  

𝑓 ( 𝑥. 𝑦 ) =  √𝑥2 + 𝑦2 ( ( 𝑥. 𝑦 ) ≠ ( 0.0 ) ). 

and which is obtained by rotating a half - line 𝑧 =  𝑥 ( 𝑥 >

 0 ) in the 𝑥𝑧 - plane about the 𝑧 - axis. that is. the cone having 

vertex at the origin.  

Using the polar coordinates ( 𝑟. 𝜃) given by  

𝑥 =  𝑟 cos 𝜃. 𝑦 =  𝑟 sin 𝜃.  

The surface is reparametrized as  

 𝑝 ( 𝑟. 𝜃 ) ( 𝑟 cos 𝜃. 𝑟 sin 𝜃. 𝑟 ) ( 𝑟 >  0 ) 

In which no square root appears. and the map 𝑝 can be extended 

smoothly to 𝑟 ≤ 0 and the image of the singular set { 𝑟 =  0 } 

consists of a point. which is a typical example of a cone - like 

singularity.  

Differentiating this. it holds that  

𝑑𝑝 =  ( 𝑐𝑜𝑠 𝜃. 𝑠𝑖𝑛 𝜃. 1 ) 𝑑𝑟 +  𝑟 ( −𝑠𝑖𝑛 𝜃. 𝑐𝑜𝑠 𝜃. 0 ) 𝑑𝜃. 

 and then the first fundamental form is written as  

 𝑑𝑠² =  𝑑𝑝. 𝑑𝑝 =  2𝑑𝑟² +  𝑟²𝑑𝜃².  

In particular. the coefficients of the first fundamental form with 

respect to the polar coordinates ( 𝑟. 𝜃 ) are 𝐸 =  2. 𝐹 =  0 and 

𝐺 =  𝑟². One can check that the first fundamental form is also 

expressed using the ( 𝑥. 𝑦 ) coordinate system as  

𝑑𝑠² = (1 + 
𝑥2

𝑥2+𝑦2
 ) 𝑑𝑥² +

2𝑥𝑦

𝑥2+𝑦2
 𝑑𝑥 𝑑𝑦 + (1 +

 
𝑦²

𝑥2+𝑦2
) 𝑑𝑦². [8] 

 

5. The Second Fundamental Form 

Let 𝑆 ⊂ 𝑅3 be an orientable regular surface with smooth unit 

normal field 𝑁 Regarded as map between surfaces i.e. 𝑁: 𝑠 →

𝑠2. the map 𝑁 is also called the Gauss map Let 𝑝 ∈ 𝑠. We 
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 consider the differential of 𝑁 at 𝑝  

dpN: Tps → TN(p)s
2 

Now TN(p)s
2 = 𝑁(𝑃)𝐿 = 𝑇𝑝𝑠. Hence dpN is an endomorphism 

on Tps.  

 

Definition (5.1) 

Let 𝑆 ⊂ 𝑅3 be a regular surface with orientation given by the 

unit normal field 𝑁. The endomorphism  

𝑊𝑝: 𝑇𝑝𝑠 → 𝑇𝑝𝑠 

𝑊𝑝(𝑥) = −𝑑𝑝𝑁(𝑥) 

is called the weingarten map. 

The negative sign appears for historic reasons. If orientation is 

reversed. i.e. if −𝑁 is substituted for 𝑁 then 𝑊 also changes is 

sign [1]. 

 

Example (5.2) 

Let 𝑠 = {(𝑥. 𝑦. 0)𝑇| 𝑥. 𝑦 ∈ 𝑅} be the 𝑥 − 𝑦 plane. 𝑁(𝑥. 𝑦. 𝑧) =

(0.0.1)𝑇. Then 𝑁 is constant and thus 𝑊𝑝 = 0 for all 𝑝 ∈ 𝑠. [1] 

 

Proposition (5.3) 

Let 𝑠 ⊂ 𝑅3 be an orientable regular surface with weingarten 

map 𝑊𝑝: 𝑇𝑝𝑠 → 𝑇𝑝𝑠. 𝑃 ∈ 𝑠. Then 𝑊𝑝 is self-adjoint with respect 

to the first fundamental form  

 

Proof 

Let 𝑁 be the unit normal field of 𝑆 that induces the Weingarten 

map. 𝑊𝑝 = −𝑑𝑝𝑁. We choose a local parametrisation (𝑈. 𝐹. 𝑉) 

at 𝑝 and set 𝑢 = 𝐹−1(𝑝).  

Let  

𝑥1 = 𝐷𝑢𝐹(𝑒1) =
𝜕𝐹

𝜕𝑢′
(𝑢) 

and 

𝑥2 = 𝐷𝑢𝐹(𝑒2) =
𝜕𝐹

𝜕𝑢2
(𝑢) 

be the corresponding basis vectors of 𝑇𝑝𝑠. As 𝑁 is 

perpendicular to 𝑆 everywhere. We have  

⟨
𝜕𝐹

𝜕𝑢2
(𝑢 + 𝑡𝑒𝑗). 𝑁 (𝐹(𝑢 + 𝑡𝑒𝑗))⟩ ≡ 0 

Differentiating this equation with respect to 𝑡 gives 

0 =
𝑑

𝑑𝑡
⟨
𝜕𝐹

𝜕𝑢𝑖
(𝑢 + 𝑡𝑒𝑗). 𝑁 (𝐹(𝑢 + 𝑡𝑒𝑗))⟩|

𝑡=0
 

= ⟨
𝑑

𝑑𝑡

𝜕𝐹

𝜕𝑢𝑖
(𝑢 + 𝑡𝑒𝑗)|

𝑡=0 
. 𝑁(𝑝)⟩ + ⟨

𝜕𝐹

𝜕𝑢𝑖
 𝑢. 𝑑𝑝𝑁𝑜𝐷𝑢𝐹(𝑒𝑗)⟩ 

= ⟨
𝜕2𝐹

𝜕𝑢𝑖
𝑢. . 𝑁(𝑝)⟩ + ⟨

𝜕2𝐹

𝜕𝑢𝑖𝜕𝑢𝑖
 𝑢. 𝑑𝑝𝑁𝑜𝐷𝑢𝐹(𝑒𝑗)⟩ 

Thus 

𝐼𝑝 (𝑥𝑖 .𝑊𝑝(𝑥𝑗)) = ⟨𝑥𝑖 .𝑊𝑝(𝑥𝑗)⟩ = ⟨
𝜕2𝐹

𝜕𝑢𝑗𝜕𝑢𝑖
(𝑢). 𝑁(𝑝)⟩ 

(3) 

 

By the theorem of Schwarz [10] the two partial derivatives of 𝑓 

can be exchanged and we obtain  

𝐼𝑝 (𝑥𝑖 .𝑊𝑝(𝑥𝑗)) = ⟨
𝜕2𝐹

𝜕𝑢𝑗𝜕𝑢𝑖
(𝑢). 𝑁(𝑝)⟩  

= ⟨
𝜕2𝐹

𝜕𝑢𝑗𝜕𝑢𝑖
(𝑢). 𝑁(𝑝)⟩ 

= 𝐼𝑝 (𝑥𝑗 .𝑊𝑝(𝑥𝑖)) 

We now know for our basis vectors 𝑥1 and 𝑥2 of 𝑇𝑝𝑠 that 

𝐼𝑝 (𝑥𝑖 .𝑊𝑝(𝑥𝑗)) = 𝐼𝑝 (𝑥𝑗 .𝑊𝑝(𝑥𝑖)) = 𝐼𝑝(𝑊𝑝(𝑥𝑖). 𝑥𝑗). 

Since any two vectors 𝑥. 𝑦 ∈ 𝑇𝑝𝑠 can be written as a linear 

combination of 𝑥1 and 𝑥2. it immediately follows from the 

bilinearity of 𝐼 and the bilinearity of 𝑊𝑝 that 

𝐼𝑝 (𝑥.𝑊𝑝(𝑦)) = 𝐼𝑝(𝑊𝑝(𝑥). 𝑦). 

i.e. 𝑊𝑝 is self-adjoint with respect to 𝐼. 

Let us recall from linear algebra that if 𝑣 is a finite - 

dimensional real vector space with Euclidean scalar product 

〈. . . 〉. then the self-adjoint endomorphisms 𝑊 on 𝑉 are uniquely 

associated with the symmetric bilinear forms 𝐵 on 𝑉. The 

relation between 𝑊 and 𝛽 is 𝛽(𝑥. 𝑦) = 〈𝑤(𝑥). 𝑦〉. 𝑥. 𝑦 ∈ 𝑉.[1] 

 

Definition (5.4) 

The second fundamental form in the local coordinates {u. v} 

(also called the second fundamental form of σ) is the 

expression  

𝐹2 = e𝑑𝑢2 + 2f du dv + g 𝑑𝑣2. [5] 

(4) 

 

Example (5.5)  

Let 𝑆2 ⊂ ℝ³. Then 𝑣 ( 𝑝 )  =  𝑝 and so  

𝐼𝐼( 𝑝 ) =  𝕝 − 𝑝𝑝𝑇  = (

1 − 𝑥2 −𝑥𝑦 −𝑥𝑧

−𝑦𝑥 1 − 𝑦2 −𝑦𝑧

−𝑧𝑥 −𝑧𝑦 1 − 𝑧2
)  

for P = (x. y. z) = S². [3] 

  

6. Third Fundamental Form 

If we write  

𝐶𝛼𝛽 = g𝑖𝑗  𝑛𝛼
𝑖  𝑛𝛽

𝑖 . 

we see that 𝐶𝛼𝛽 is a symmetric covariant surface tensor of type 

(0.2) and we call the quadratic form 𝐶 ≡ 𝐶𝛼𝛽𝑑𝑢
𝛼  𝑑𝑢𝛽 the 

third fundamental form of the surface.  

 Using Weingarten formula. we get  

 𝐶𝛼𝛽 = g𝑖𝑗 𝑛𝛼
𝑖  𝑛𝛽

𝑖 = g𝑖𝑗  ( −𝑎
𝛿𝛾 𝑏𝛿𝛼 𝑥𝛾

𝑗
)(−𝑎𝜇𝜃 𝑏𝜇𝛽 𝑥𝜃

𝑗
) 

= 𝑎𝛾𝜃 𝑎
𝛿𝛾 𝑏𝛿𝛼 𝑎

𝜇𝜃𝑏𝜇𝛽 = 𝑎
𝜇𝛿  𝑏𝛿𝛼 𝑏𝜇𝛽 

This is the relation between three fundamental forms on a 

surface. but here the third fundamental form is not an actual 

fundamental form because this can be obtained from first and 

second fundamental forms [2]. 

 

Definition (6.1) 

If 𝐷 is some region on a surface Φ then the real number 

𝑤(𝐷) = ∬ 𝑘𝑑𝑠
 

𝐷 
 is called the integral curvature of 𝐷. If 𝐷 lies 

entirely in some coordinate neighborhood (u. v) then  

𝑤(𝐷) = ∬𝑘(𝑢. 𝑣)

 

𝐷 

√𝐸(𝑢. 𝑣)𝐺(𝑢. 𝑣) − 𝐹2(𝑢. 𝑣) 𝑑𝑢𝑑𝑣 
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Theorem (6.2) 

At each point on a regular surface ∅ of class 𝑐𝑘(𝑘 ≥ 3) the 

following curvature.  

 

Proof  

Let 𝑃 be an arbitrary point and ∅. Introduce coordinates (𝑢. 𝑣) 

in some neighborhood of this point such that the vectors 𝑟𝑢 and 

𝑟𝑣 at 𝑃 become parallel to the principal vectors. Then from 

Rodrigcles's theorem and theorem we obtain at the point 𝑃.  

⟨𝑟𝑢. 𝑟𝑣 ⟩ = 0 

�⃗⃗�𝑢 = −𝑘1𝑟𝑢. �⃗⃗�𝑣 = −𝑘2𝑟𝑣. 

Map and the Gaussian curvature of ∅ has the same Singh at 

each at each point of 𝐷 [13].  

 

7. The fundamental theorem of surface theory 

Suppose we consider a regular oriented surface 𝑆 and 

coordinate path 𝑣 parameterized by  𝑥 ⃗⃗⃗⃗⃗: 𝑈 → 𝑅3. We have seen 

that the coefficient (𝑔𝑖𝑗) and (𝐿𝑖𝑗) of the first and second 

fundamental forms satisfy det(𝑔𝑖𝑗) > 0 and the Gauss – 

codazzi equations.  

That given these conditions. there exists an essentially unique 

surface with specified first and second fundamental form is a 

profound result. called the fundamental theorem of surface 

theory [12]. 

 

Theorem (7.1)  

If 𝐸. 𝐹. 𝐺 and 𝑒. 𝑓. 𝑔 are sufficiently differentiable functions of 

(𝑢. 𝑣) that satisfy the Gauss-codazzi equation  

 

 

 

and 𝐸𝐺 − 𝐹2 > 0. then there exists a parametrization �̅� of a 

regular orient able surface that admits 

𝑔11 = 𝐸. 𝑔12 = 𝐹. 𝑔22 = 𝐺. 𝐿11 = 𝑒. 𝐿12 = 𝑓. 𝐿22 = 𝑔 

Furthermore. this surface is uniquely determined up to its 

position in space.  

The original proof of this theorem was provided by Bonnet in 

1855. In more recent texts. one can find the proof Appendix to 

Chapter 4 in [7] or in Chapter VI of [4]. We not provide a 

complete proof of the fundamental theorem of surface theory 

here since it involves solving a system of partial differential 

equations. but we sketch the main points behind it. The setup 

for the proof is to. consider nine functions 𝜉𝑖(𝑢. 𝑣). 𝜑𝑖(𝑢. 𝑣) 

and 𝜓𝑖(𝑢. 𝑣) with 1 ≤ 𝑖 ≤ 3. and think of these functions as 

the components of the vector functions �⃗�𝑢. and �⃗⃗⃗� so that �⃗�𝑢 =

(𝜉1. 𝜉2. 𝜉3). �⃗�𝑣 = (𝜑1. 𝜑2. 𝜑3). �⃗⃗⃗� = (𝜓1. 𝜓2. 𝜓3). With this 

setup. the equations that define Gauss's and Weingarten 

equations. namely. become the following system of 18 partial 

differential equation for𝑖 = 1.2.3. 

𝜕𝜉𝑖
𝜕𝑢

= Γ11
1  𝜉𝑖 + Γ11

2 𝜑𝑖 + 𝐿11𝜓𝑖.
𝜕𝜉𝑖
𝜕𝑣
= Γ12

1  𝜉𝑖 + Γ12
2 𝜑𝑖 + 𝐿12𝜓𝑖 

𝜕𝜑𝑖
𝜕𝑢

= Γ21
1  𝜉𝑖 + Γ21

2 𝜑𝑖 + 𝐿21𝜓𝑖 .
𝜕𝜑𝑖
𝜕𝑣

= Γ22
1  𝜉𝑖 + Γ22

2 𝜑𝑖 + 𝐿22𝜓𝑖 

𝜕𝜓𝑖
𝜕𝑢

= 𝑎1
1 𝜉𝑖 + a1

2𝜑𝑖 + 𝐿21𝜓𝑖 . 

 
𝜕𝜓𝑖

𝜕𝑣
= 𝑎2

1 𝜉𝑖 + a2
2𝜑𝑖     (6) 

In general. when a system of partial differential equations 

involving n 

Functions 𝑢𝑖(𝑥1. … . 𝑥𝑚) has 𝑛 < 𝑚. the solutions may involve 

not only constants of integration but also unknown functions 

that can be any continuous function from 𝐼𝑅 to 𝑅 (on some 

appropriate interval). However. when 𝑛 > 𝑚. i.e. when there 

are more functions in the system than there are independent 

variables. the system may be overdetermined and may either 

have less freedom in its solution set or have no solutions at all. 

In fact. one cannot expent the above system to hace solutions 

if the mixed partial derivatives of 𝜉 = (𝜉1. 𝜉2. 𝜉3). �⃗⃗� =

(𝜑1. 𝜑2. 𝜑3). and �⃗⃗� = (𝜓1. 𝜓2. 𝜓3) are not equal. this is 

usually called the compatibility condition for systems of partial 

differential equations and as we see in the above systems this 

condition imposes relations between the functions Γ𝑗𝑘
i (𝑢. 𝑣) 

and Ljk(u. v). 

The key ingredient behind the fundamental theorem of surface 

theory is theorem 𝑉 in Appendix 𝐵 that applied to our context. 

states that if all second derivatives of the Γ𝑗𝑘
𝑖  and 𝐿𝑗𝑘 functions 

are continuous and if the compatibility condition holds in 

equation (4.7). solutions to the system exist and are unique 

once values for 𝜉(𝑢°. 𝑣°). �⃗⃗�(𝑢°. 𝑣°) and �⃗⃗�(𝑢°. 𝑣°) are given. 

where (𝑢°. 𝑣°) is a point in the common domain of Γ𝑗𝑘
i (𝑢. 𝑣) and 

𝐿𝑗𝑘(𝑢. 𝑣) the compatibility condition required in this theorem 
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is satisfied if and only if the functions 𝑔11 = 𝐸. 𝑔12 = 𝐹. 𝑔22 =

𝐺. 𝐿11 = 𝑒. 𝐿12 = 𝑓 and 𝐿22 = 𝑔 satisfy the Gauss – codazzi 

equations. Solution to equation (4.7) can be chosen in such a 

way that  

𝜉(𝑢°. 𝑣°). 𝜉(𝑢°. 𝑣°) = 𝐸(𝑢°. 𝑣°)�⃗⃗�(𝑢°. 𝑣°). �⃗⃗�(𝑢°. 𝑣°) = 𝐺(𝑢°. 𝑣°). 

𝜉(𝑢°. 𝑣°). �⃗⃗�(𝑢°. 𝑣°) = 𝐹(𝑢°. 𝑣°). �⃗⃗�(𝑢°. 𝑣°). �⃗⃗�(𝑢°. 𝑣°) = 1 

�⃗⃗�(𝑢°. 𝑣°)𝜉(𝑢°. 𝑣°) = 0. �⃗⃗�(𝑢°. 𝑣°). �⃗⃗�(𝑢°. 𝑣°) = 0. 

𝜉(𝑢°. 𝑣°) × �⃗⃗�(𝑢°. 𝑣°)

‖𝜉(𝑢°. 𝑣°) × �⃗⃗�(𝑢°. 𝑣°)‖
= �⃗⃗�(𝑢°. 𝑣°) 

      (7) 

The next step of the proof is to show that. given the above 

initial conditions. the following equations hold for all (𝑢. 𝑣) 

where the solution are defined:  

𝜉(𝑢. 𝑣). 𝜉(𝑢. 𝑣) = 𝐸(𝑢. 𝑣)�⃗⃗�(𝑢. 𝑣). �⃗⃗�(𝑢. 𝑣) = 𝐺(𝑢. 𝑣). 

𝜉(𝑢. 𝑣). �⃗⃗�(𝑢. 𝑣) = 𝐹(𝑢. 𝑣). �⃗⃗�(𝑢. 𝑣). �⃗⃗�(𝑢. 𝑣) = 1 

�⃗⃗�(𝑢. 𝑣)𝜉(𝑢. 𝑣) = 0. �⃗⃗�(𝑢. 𝑣). �⃗⃗�(𝑢. 𝑣) = 0. 

𝜉(𝑢. 𝑣) × �⃗⃗�(𝑢. 𝑣)

‖𝜉(𝑢. 𝑣) × �⃗⃗�(𝑢. 𝑣)‖
= �⃗⃗�(𝑢. 𝑣) 

From the solution for 𝜉. �⃗⃗� and �⃗⃗�. we form the new system of 

differential equations  

 {
�⃗�𝑢 = 𝜉

�⃗�𝑣 = �⃗⃗�
 

One easily obtains a solution for the functions �⃗� over 

appropriate (𝑢. 𝑣) by: 

�⃗�(𝑢. 𝑣) =  ∫ 𝜉(𝑢. 𝑣)
𝑢

𝑢°
𝑑𝑢 + ∫ �⃗⃗�(𝑢. 𝑣)

𝑣

𝑣°
𝑑𝑣  (8) 

The resulting vector function �⃗� is defined over an open set 𝑈 ⊂

𝑅2 containing (𝑢°. 𝑣°) and �⃗� parametrizes a regular surface 𝑆. 

By construction. the coefficients of the first fundamental form 

this surface are 𝑔11 = 𝐸. 𝑔12 = 𝐹. 𝑔22 = 𝐺. 

One then proves that it is also true that the coefficients of the 

second fundamental form satisfy 𝐿11 = 𝑒. 𝐿12 = 𝑓. 𝐿22 = 𝑔. 

It remains to be shown that this surface is unique up to a rigid 

motion in 𝐼𝑅3. It is not hard to see that the equalities in equation 

(4.8) imposed on the initial condition still allow one the 

freedom to shoose the unit vector 𝜉(𝑢°. 𝑣°) =
�⃗⃗�(𝑢°.𝑣°)

‖�⃗⃗�(𝑢°.𝑣°)‖
 and the 

vector �⃗⃗�(𝑢°. 𝑣°). which must be perpendicular to 𝜉(𝑢°. 𝑣°). The 

vectors 𝜉(𝑢°. 𝑣°). �⃗⃗�(𝑢°. 𝑣°). 𝜉(𝑢°. 𝑣°) × (𝑢°. 𝑣°). 

Form a positive orthonormal frame. so any two choices allowed 

by equation (4.8) differ from each other by a rotation in 𝐼𝑅3. 

Finally. the integration in equation (4.9) introduces a constant 

vector of integration. Thus. two solutions to Gauss's and 

Weingarten equations differ from each other by a rotation and 

a ndamental form is not an actual fundamental form because 

this can be obtained from first and second fundamental forms. 

Translation namly any rigid motion in 𝐼𝑅3 [12]. 
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