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Abstract 

The purpose of this paper is to obtain different sets of non-zero distinct integral solutions of ternary non-homogeneous cubic 

Diophantine equation 𝑥2 + 𝑥𝑦 + 𝑦2 = (𝑚2 + 3𝑛2)𝑧3. A few properties of interest are presented. 
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Introduction 

The theory of Diophantine equations offers a rich variety of 

fascinating problems. In particular, cubic diophantine 

equations, homogeneous and non-homogeneous have aroused 

the interest of numerous mathematicians since antiquity [1-4]. In 

this context, one may refer [5-26] for various problems on the 

cubic diophantine equations with three variables, where, in 

each of the problems, different sets of non-zero integer 

solutions are obtained. However, often we come across 

homogeneous and non-homogeneous cubic equations and as 

such one may require its integral solution in its most general 

form. It is towards this end, this paper concerns with the 

problem of determining a general form of non-trivial integral 

solutions of the non-homogeneous cubic equation with three 

unknowns given by 𝑥2 + 𝑥𝑦 + 𝑦2 = (𝑚2 + 3𝑛2)𝑧3. 

 

Notations 

𝑇𝑛 - Triangular number of rank n 

𝑂𝑏𝑛 - Oblong number of rank n 

𝑇ℎ𝑛 - Tetrahedral number of rank n 

𝑃𝑃𝑛 - Pentagonal Pyramidal number of rank n 

 

Method of analysis  

The ternary cubic equation under consideration is 

32222 )3( znmyxyx +=++
   (1) 

Different patterns of integral solutions of (1) are analyzed 

below:  

Pattern I  

Substitution of  

vuyvux −=+= ,
    (2) 

in (1), reduces it to 

32222 )3(3 znmvu +=+
    (3) 

which can be written as  

33 )3()3)(3)(3()3)(3( biabianimnimuivuiv −+−+=−+  
Where, 

22 b3az +=
      (4) 

Assuming  

( ) 3)3)(3(3 bianimuiv ++=+
  

and equating the real and imaginary parts, the values of u, v are 

obtained. In view of (2), we get the solutions of (1) as 








−+−+−+−=

+−−+−+−=

)b9ba9ab9a(n)b3ba3aab9(my

)b9ba9ab9a(n)b3ba3ab9a(mx

32233232

32233223

       (5) 

along with (4). 

To analyze the nature of solutions of (1), one has to go in for 

particular values of 𝑚 and 𝑛 

We present below the integral solutions of (1) for the choices 

of 𝑚 and 𝑛 given by 

i. 1=m  0=n  

ii. 0=m  1=n  

 

Choice I 

Taking 𝑚 = 1, 𝑛 = 0 in (1) & (5), we get the ternary cubic 

diophantine equation to be solved is  

322 zyxyx =++
     (6) 

and the corresponding solutions are 








−+−=

−+−=

)b3ba3aab9(y

)b3ba3ab9a(x

3232

3223

 
along with (4). 

 

Properties 

1. 
𝑎(𝑥+𝑦)

6
 represents a Nasty number, when 𝑎 = 2(𝑟4 +

𝑠4), 𝑏 = 4𝑟2𝑠2  
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2. 
(𝑥−𝑦)

𝑎
 represents a Nasty number, when 𝑎 = 3𝑟2 +

9𝑠2; 𝑏 = 𝑟2 − 3𝑠2 

3. 𝑥 + 𝑦 represents a Nasty number for the following choices 

of 𝑎 and 𝑏. 

a) 𝑎 = (24𝛼−2 + 1)𝑞2; 𝑏 = 22𝛼𝑞2  

b) 𝑎 = 4𝑘4 + 8𝑘3 + 6𝑘2 + 2𝑘, 

𝑏 = 4𝑘4 + 8𝑘3 + 4𝑘2(𝑜𝑟) − 4𝑘4 − 8𝑘3 − 8𝑘2 − 4𝑘 −

1  

c) 𝑎 = 2𝑟4 + 2𝑠4; 𝑏 = 4𝑟2𝑠2 

4. Each of the expressions
𝑥2−𝑦2

6𝑎(𝑎+3𝑏)
,

𝑥2−𝑦2

6𝑎(𝑎−3𝑏)
 

3𝑏(𝑥−𝑦)

2
 is a 

Nasty number. 

5. 9(6𝑏𝑧 − 𝑥 − 𝑦), 𝑥 − 𝑦 + 6𝑎𝑧 are cubical integers. 

6. 𝑧 is a square when 𝑎 = 3𝑟2 − 𝑠2 (𝑜𝑟) 𝑟2 − 3𝑠2, 𝑏 = 2𝑟𝑠. 

7. 
𝑥2−𝑦2

12𝑎𝑏
 is written as the product or four numbers in 

Arithmetic Progression. 

8. When 𝑎 = 5𝑟2 + 𝑠2 − 4𝑟𝑠, (𝑜𝑟) 𝑟2 + 5𝑠2 − 4𝑟𝑠; 𝑏 =

2𝑟𝑠 
𝑦+𝑎𝑧

3𝑏
 is a perfect square. 

9. When 𝑎 = 5𝑟2 + 𝑠2 + 4𝑟𝑠 (or) 𝑟2 + 5𝑠2 + 4𝑟𝑠; 𝑏 = 2𝑟𝑠, 
𝑥−𝑎𝑧

3𝑏
 is a perfect square. 

10.  𝑥 + 𝑦 + 𝑧 is a perfect square when 

a) 𝑎 = 4𝑏, 𝑏 = 90𝑢2 + 34𝑢 + 3 

b) 𝑎 = 2𝑏, 𝑏 = 18𝑢2 + 10𝑢 + 1 

11. 
𝑥+𝑦+𝑧

3
 is a perfect square when 𝑎 = ±6𝑇𝛼 , 𝑏 = 2𝑇𝛼. 

It is worth mentioning that (6) is also solved through a different 

approach as follows: 

On completing the squares, (6) is written as  

(2𝑥 + 𝑦)2 + 3𝑦2 = 4𝑧3     (7) 

The substitution of the linear transformations 

𝑥 = 2𝑋, 𝑦 = 2𝑌      (8) 

in (7) leads to 

(2𝑋 + 𝑌)2 + 3𝑌2 = 𝑧3     (9) 

Using (4) in (9), it is written in the factorized form as 

( )( ) 33 )3()3(3)2(3)2( biabiaYiYXYiYX −+=−+++  
Defining 

((2𝑋 + 𝑌) + 𝑖√3𝑌) = (𝑎 + 𝑖√3𝑏)3 

and equating the rational and irrational parts, we get 

23 92 abaYX −=+      (10) 

32 33 bbaY −=      (11) 

Solving (10) and (11) for 𝑋 and employing (8), we have 

3223 339 bbaabax +−−=     (12) 

32 66 bbay −=
     (13) 

Thus, (4), (12) and (13) represent the non-trivial integral 

solutions of (6) provided 𝑎 ≠ 𝑏. 

We preset below a few interesting relations among the 

solutions: 

1. Each of the expressions 
3𝑏

2
(2𝑥 + 𝑦), (𝑎 > 3𝑏), 

𝑎𝑦

6
 

represents a Nasty number. 

2. If 𝑏 = 1, then 𝑎𝑦 = 36 𝑇ℎ(𝑎−1) 

3. If 𝑎 = 2𝑛 + 1, 𝑏 = 1, then 𝑦 = 48, 𝑇𝑛= 96 𝑂𝑏𝑛  

4. If 𝑎 = −𝑏, then 𝑥 represents a cubical integer. 

Also, if 𝑎 = −3𝐵, 𝑏 = −𝐵then 9𝑥 is a cubical integer.  

Representing the solutions 𝑥, 𝑦, 𝑧 of (12), (13) & (4) by the 

notations 𝑥(𝑎, 𝑏), 𝑦(𝑎, 𝑏), 𝑧(𝑎, 𝑏) respectively, the 

following relations are observed: 

5. 
),(),( baxbax −−−=

 

6. 
),3(),3( bbxbbx −=

 

7. 
),(3),3( bbxbbx −=−−

 

8. 
36)]1,(),1,([ =−−−− axaxa )1( −aTh

 
9. Each of the expressions represents a Nasty number 

a) 
)],(),(2),2([2 baybbaybbayb ++−+

 

b) 
)],(),([2 bbaybbayb −++

 

c) 
)],(),([ bbaybbaya −−+

 

d) 
)],(),(2),2([3 bazbbazbbaz ++−+

 

e) 
),(3),(2),2( bazbbazbbaz −−++

 

f) 
)],(),([6 bbazbbazab −−+

 

g) 
)],(),([3 22 bbaybbayab −−+

 
10. 6𝑏[𝑧(𝑎 + 2𝑏, 𝑏) − 2𝑧(𝑎 + 𝑏, 𝑏)] = 𝑦(𝑎 + 2𝑏, 𝑏) −

2𝑦(𝑎 + 𝑏, 𝑏) + 𝑦(𝑎. 𝑏) 

11. 6[𝑦2(𝑎 + 𝑏, 𝑏) − 𝑦2(𝑎 − 𝑏, 𝑏)] is a cubical integer. 

12. 2[𝑦2(𝑎 + 𝑏, 𝑏) + 𝑦2(𝑎 − 𝑏, 𝑏)] = 9(𝑧 + 𝑏2)[𝑧(𝑎 +

𝑏, 𝑏) − 𝑧(𝑎 − 𝑏, 𝑏)]2 

13. 
8[36)]1,()1,1([ 2 =−+ ayay aT ]1+

 

14. 
48),1(),21( =−+ bybby bPP

 

15. 
366),1(),21( 2 =++−+ bbbybby bPP

 
16. Each of the following expressions is written as the 

difference of two squares 

a) 
),(),( bbazbbaz −−+

 

b) 
),(),( bazbbaz −+

 

c) 
),(),( bbazbaz −−

 

d) 6

)1,()1( ayay −+

 
 

Choice II 

Taking 𝑚 = 0, 𝑛 = 1 in (1) & (5), we get the ternary cubic 

diophantine equation to be solved is  

322 z3yxyx =++
    (14) 

and the corresponding solutions are 








−+−=

+−−=

)b9ba9ab9a(y

)b9ba9ab9a(x

3223

3223

 
along with (4). 

It is worth mentioning that (14) is also solved through a 

different approach as follows: 

On completing the squares, (14) is written as  

322 123)2( zyyx =++
   (15) 

Using (4) in (15), it is written in the factorized form as 

( )( ) )33)(33()3()3(3)2(3)2( 33 iibiabiayiyxyiyx −+−+=−+++  
Defining 

( ) ( ))33(3)9()33(3)2( 3223 bbaiabaiyiyx −+−+=++  
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and equating the rational and irrational parts, we get 

3223 992732 bbaabayx +−−=+
   (16) 

2332 999 ababbay −+−=
    (17) 

Solving (16) and (17), we get  

3223 b9ba9ab9ax +−−=     (18)  

Thus (4), (17) and (18) give the integral solutions to (14). 

The following properties are satisfied by the above solutions 

1. 3𝑏(𝑥 + 𝑦) is two times a Nasty number. 

2. 
𝑎(𝑦−𝑥)

18
 is a Nasty number 

3. When 𝑏 = 1, 𝑎(𝑦 − 𝑥) = 108 𝑇ℎ𝑎−1 

4. 𝑧 is a perfect square when 𝑏 = 2𝑟𝑠, 𝑎 = 3𝑟2 − 𝑠2(or) 𝑎 =

𝑟2 − 3𝑠2 

5. When 𝑎 = 9(𝑝2 + 𝑞2)2, 𝑏 = 3(6𝑝2𝑞2 − 𝑝4 − 𝑞4), 
𝑥+𝑦

3
 is 

a Nasty number. 

6. When 𝑎 = 9(𝑅2 + 𝑆2), 𝑏 = 3(𝑅2 − 𝑆2), 
𝑥+𝑦

2
 is written as 

the sum of two squares. 

7. When 𝑎 = 2(𝑝4 + 𝑞4), 𝑏 = 4𝑝2𝑞2, 
𝑦−𝑥

3
 is a Nasty 

number. 

8. Each of the expressions represents 𝑥 + 𝑦 + 6𝑎𝑧 = 8𝑎3, 

3(𝑥 − 𝑦 + 18𝑏𝑧) = 216𝑏3 a cubical integer  

9. Denoting the solutions of 𝑥, 𝑦, 𝑧 of (6.30) by the notations 

𝑥(𝑎, 𝑏), 𝑦(𝑎, 𝑏), 𝑧(𝑎, 𝑏) respectively, the following 

relations are observed 

a) 𝑥(𝑎, 𝑏) + 𝑥(−𝑎, −𝑏) = 0 

b) 𝑎[𝑥(−𝑎, −𝑏) + 𝑦(𝑎, 𝑏)] = 18 (Area of the Pythagorean 

triangle with generators (𝑎, 𝑏)(𝑎. > 𝑏)) 

c) 𝑎[𝑥(−𝑎, −1) + 𝑦(𝑎, 1)] = 108𝑇ℎ(𝑎−1) 

d) 𝑦(3𝑏, 𝑏) + 𝑥(3𝑏, 𝑏) = 0 

e) 𝑦(𝑎, −𝑏) = 𝑥(𝑎, 𝑏) 

f) 𝑥(−𝑎, −1) + 2𝑃𝑃𝑎 − 18𝑇𝑎 + 9 is a perfect square. 

g) 𝑦(1, 𝑏) + 18𝑃𝑃𝑏 − 1 ≡ 0(𝑚𝑜𝑑 9) 

h) 𝑥(𝑎, 1) + 𝑦(𝑎, 1) − 4𝑃𝑃𝑎 + 4𝑇𝑎 ≡ 0(𝑚𝑜𝑑 1 6) 

i) If 𝑎 > 3𝑏,
3𝑏

2
[𝑥(𝑎, 𝑏) + 𝑦(𝑎, 𝑏)] is the area of a 

Pythagorean triangle whose generators are 𝑎, 3𝑏 

j) If 𝑎𝑏 is a perfect square, then  

3[𝑥(𝑎, 𝑏 − 1) + 𝑦(𝑎, 𝑏 − 1) − 𝑥(𝑎, 𝑏 + 1) − 𝑦(𝑎, 𝑏 +

1)] is a Nasty number 

k) 2𝑎2𝑧 − 𝑎𝑥(𝑎, 𝑏) − 𝑎𝑦(𝑎, 𝑏) is a Nasty number 

l) [𝑥(𝑎, 𝑏 + 1) − 𝑥(𝑎, 𝑏) + 𝑦(𝑎, 𝑏 + 1) − 𝑦(𝑎, 𝑏)]2 =

324𝑎2[8𝑇𝑏 + 1] 

m) 3𝑦(3𝑏, 𝑏) is a cubical integer 

n) If 𝑎 = 𝑏2, 3[𝑥(𝑎, 𝑏 − 1) + 𝑦(𝑎, 𝑏 − 1) − 𝑥(𝑎, 𝑏 + 1) −

𝑦(𝑎, 𝑏 + 1)] is a cubical integer. 

o) 𝑥(𝑎, 𝑏) + 𝑦(𝑎, 𝑏) + 6𝑎𝑧(𝑎, 𝑏) is a cubical integer 

p) 18𝑏𝑧 − 𝑥(9𝑏, 𝑏) − 𝑦(9𝑏, 𝑏) is a cubical integer 

 

Conclusion 

In this paper, we have made an attempt to find non-zero distinct 

integer solutions to the non-homogeneous cubic equation with 

three unknowns given by 𝑥2 + 𝑥𝑦 + 𝑦2 = (𝑚2 + 3𝑛2)𝑧3. To 

conclude, one may search for other choices of general form of 

integer solutions to the cubic equation with three unknowns in 

title. 
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