

Neuropharmacological perspectives on Alzheimer's disease

Natalia Moningka¹, Orbanus Naharia¹ and Anatje Lihiang¹

Sandip Institute of Pharmaceutical Sciences, Nashik, Maharashtra, India Correspondence Author: Natalia Moningka Received 5 Jun 2025; Accepted 18 July 2025; Published 6 Aug 2025

Abstract

Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders, characterized by the progressive loss of nerve cells across various regions of the brain. Pathologically, it is associated with intracellular neurofibrillary tangles and extracellular amyloid protein deposits, which disrupt neural transmission and lead to cognitive decline. Nutrition and lifestyle factors play a crucial role in both the development and prevention of AD. Early diagnosis relies on sensitive biomarkers capable of distinguishing between different causes of dementia. Emerging therapeutic strategies, including the use of induced pluripotent stem cells, show promise in addressing the underlying pathology. The primary hypotheses explaining AD pathogenesis include the cholinergic, tau, and amyloid hypotheses, with additional risk factors such as age, genetics, head trauma, vascular diseases, infections, and environmental influences. Currently approved pharmacotherapies—cholinesterase inhibitors and NMDA receptor antagonists—alleviate symptoms but do not cure or prevent disease progression. Contemporary research focuses on multiple pathological processes, including tau protein dysregulation, β-amyloid accumulation, oxidative stress, neuroinflammation, and cholinergic dysfunction, aiming to develop disease-modifying treatments. This review provides a comprehensive neuropharmacological perspective on AD, emphasizing the underlying mechanisms, risk factors, and current and emerging pharmacotherapeutic strategies for its management.

Keywords: Alzheimer's disease, Acetyl cholinesterase inhibitors, Neuropharmacological, Pharmacotherapeutic

Introduction

Alzheimer's disease (AD) is the leading cause of dementia, accounting for approximately 60%–80% of cases worldwide, as reported by the World Health Organization [1,10,13]. Dementia is a major contributor to cognitive impairment and functional dependence globally. AD is a progressive neurodegenerative disorder primarily affecting memory, thinking skills, and cognitive abilities, ultimately compromising the ability to perform daily tasks. The disease predominantly impacts the temporal lobe, entorhinal cortex, and hippocampus, and as it progresses, the cerebral cortex becomes involved, affecting language, reasoning, and social behavior, which may ultimately lead to death [1].

Pathologically, AD is characterized by the accumulation of amyloid plaques, neurofibrillary tangles, and Lewy bodies in the brain [4]. The involvement of the medial temporal lobe, including the entorhinal cortex and hippocampus, disrupts anterograde episodic memory, manifesting as the forgetting of everyday details [3,4]. Although early symptoms may seem mild, they are often noticeable to both patients and caregivers. The current diagnostic criteria for AD focus on cognitive deficits severe enough to impair daily functioning, commonly referred to as mild cognitive impairment (MCI). Approximately 10% of MCI patients progress to AD annually [11,12].

As the disease advances, cognitive and functional abilities—including visuospatial and executive functions—deteriorate. Later stages are associated with increased dependency and

severe neurological impairments, such as akinetic mutism. Reduced mobility often leads to death within 6–12 years due to complications like pulmonary or venous embolism. AD diagnosis is primarily based on clinical evaluation, supported by neuroimaging to rule out other conditions presenting with similar symptoms. In the near future, diagnostic criteria may also include laboratory tests, such as biomarker analysis, genetic testing, and molecular or functional neuroimaging, to improve early and late-stage detection.

The etiology of AD remains incompletely understood, and no treatment currently exists to eradicate the disease. Available pharmacological therapies, including acetylcholinesterase inhibitors, NMDA receptor antagonists, and antioxidants, aim primarily to slow disease progression and manage symptoms [6,9,14]. Understanding how these medications interact with neural pathways is critical, and various neuropharmacological mechanisms have been explored in the literature.

History

The first case of AD was reported in 1906 by German psychiatrist and pathologist Dr. Alois Alzheimer, who observed pathological changes in the brain of a female patient with severe cognitive impairment. Over the next five years, eleven additional cases were documented, giving rise to the term Alzheimer's disease [11]. Initially, the term Senile Dementia of Alzheimer's Type (SDAT) described patients aged 65 and above, whereas classical AD referred to younger patients. Over time, Alzheimer's disease has come to

encompass individuals of all ages exhibiting the characteristic neuropathology and clinical symptoms.

Globally, nearly 47 million individuals were affected by dementia in 2015, with projections of 75 million by 2030 and 131 million by 2050 [13]. The annual incidence is estimated at 4.6 million new cases, equivalent to one new patient every

seven seconds. Aging is a major risk factor; for example, the Canadian Study on Health and Aging reported that approximately 10% of individuals aged 65 and older are affected by dementia, increasing to 35% in those aged 85 and above [15].

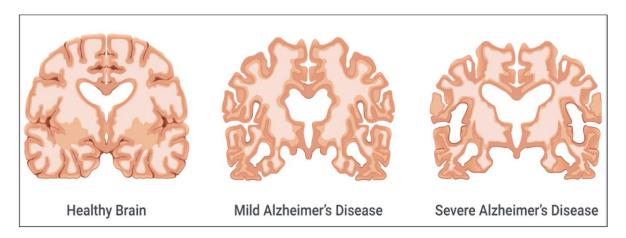


Fig 1: Illustrates the progression of Alzheimer's disease

Genetics of Alzheimer's Disease

Alzheimer's disease (AD) is inherited in approximately 2% of cases through autosomal dominant transmission, known as early-onset familial AD (EOFAD) [18]. Early-onset AD, also referred to as younger-onset AD, occurs before the age of 65 and accounts for only 5–10% of all AD cases [19]. Roughly 60% of these patients have a positive family history, with 13% exhibiting autosomal dominant inheritance [20]. Most early-onset AD cases, however, resemble late-onset AD and are not linked to specific genetic mutations.

EOFAD is directly associated with mutations in three key genes: amyloid-beta precursor protein (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2) [44]. Most APP and presenilin mutations increase the production of amyloid beta (A β)42, the primary component of amyloid plaques. Some mutations alter the A β 42/A β 40 ratio without increasing total A β 42 levels. Additional genes, including ABCA7 and SORL1, have also been implicated in autosomal dominant AD [2,4,15,21].

The majority of AD cases are sporadic, arising from the complex interaction of genetic and environmental factors. Sporadic AD typically manifests after age 65, with less than 5% showing early onset [18]. The APOΕε4 allele is the most significant genetic risk factor for sporadic AD [22]. APOE, coding for the lipid carrier protein apolipoprotein E (ApoE), has four alleles, with ε4 increasing AD risk threefold. Although ε4 carriers constitute roughly 25% of the population, they represent nearly 50% of AD cases [10,16,22,44]. Multiple allelic variants in the genome further elevate the risk of AD.

Hypotheses related to Alzheimer's disease Amyloid hypothesis

The amyloid hypothesis, also known as the amyloid cascade hypothesis, has been the dominant framework for understanding AD pathophysiology for over 25 years [16]. It

posits that $A\beta$ deposition is the primary causative agent in AD, triggering neurofibrillary tangles, neuronal death, vascular damage, and dementia [23]. Anti-A β therapeutic strategies aim to reduce $A\beta$ production by targeting β - and γ -secretase [17]. While $A\beta$ remains a key initiator in early disease, increasing evidence suggests it may be necessary but not sufficient for late-stage pathology [25].

Tau Hypothesis

Neurofibrillary tangles, composed of hyperphosphorylated tau protein, represent another hallmark of AD. Pathological tau aggregation disrupts axon integrity, contributing to neurodegeneration [40]. Tau undergoes various post-translational modifications, including phosphorylation, acetylation, monomethylation, dimethylation, ubiquitylation, and arginine methylation [26]. The development of tau-targeting therapies is challenging due to limited understanding of AD mechanisms, insufficient biomarkers for diagnosis and treatment monitoring, and the restrictive blood-brain barrier [27].

Cholinergic Hypothesis

The cholinergic hypothesis emphasizes acetylcholine (ACh) deficiency as a central contributor to AD symptoms [28]. Neuronal loss in the basal forebrain, particularly the nucleus basalis of Meynert, leads to reduced cholinergic innervation of the cerebral cortex. Central cholinergic antagonists, such as atropine, can mimic AD-like cognitive deficits, supporting the hypothesis that cholinergic insufficiency drives AD-related cognitive decline [31]. Other neurotransmitter systems, including glutamate, serotonin (5-HT), and neuropeptides, are also affected. Cholinesterase inhibitors, such as Tacrine, were developed based on this hypothesis and represent the first clinically approved pharmacological treatment for AD [30].

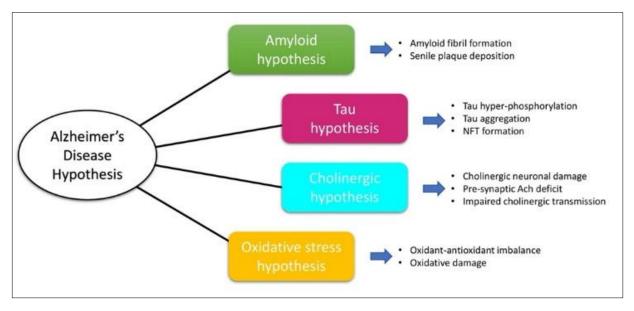


Fig 2: Hypothesis of AD and deficits actually happening and leading to disease progression and damage

Signs and symptoms of Alzheimer's disease

Alzheimer's disease (AD) develops gradually, with symptoms often initially attributed to normal aging. The rate of progression varies among individuals, and in some cases, worsening may be influenced by other medical conditions. Prompt medical evaluation is recommended for individuals whose symptoms rapidly worsen, as treatable factors may contribute to cognitive decline. AD symptoms are commonly categorized into three stages: early, middle, and late.

Early Stage

The hallmark of early-stage AD is memory impairment, particularly short-term memory loss. Patients may forget recent conversations, misplace items, struggle to recall names of objects or places, and repeat questions. Other early signs include poor judgment, difficulty making decisions, reduced flexibility, and hesitation in trying new activities [54]. Cognitive decline may extend beyond memory, affecting language, executive functions, perception (agnosia), and motor planning (apraxia) in some patients [56]. Not all types of memory are equally affected; episodic, semantic, and implicit memories often remain relatively intact compared to recent memories [55].

Middle Stage

As AD progresses, memory deficits worsen and additional cognitive and behavioral symptoms emerge. Patients may

experience confusion, disorientation, and spatial navigation difficulties, including getting lost. Behavioral changes such as obsessive-compulsive tendencies, impulsivity, paranoia, delusions, and suspiciousness towards caregivers are common. Language impairments (aphasia), disturbed sleep, mood alterations, and hallucinations may also occur [54]. Functional independence declines, with patients requiring assistance for many daily activities. Speech difficulties manifest as word-finding problems and paraphasias, while reading and writing abilities deteriorate [55]. Motor coordination becomes impaired, increasing the risk of falls, and long-term memory gradually declines [56].

Late Stage

The late stage of AD is the most severe, characterized by profound cognitive and functional impairments. Patients may experience hallucinations, delusions, aggression, and heightened dependency on caregivers [55]. Full-time assistance is often required for basic activities such as eating, mobility, and personal hygiene [54]. Language ability diminishes to simple phrases or single words, eventually progressing to total aphasia. While aggression may persist, apathy and fatigue become predominant. Patients ultimately lose the ability to perform even fundamental tasks independently, with significant muscle wasting and immobility. Mortality is typically due to secondary complications such as pneumonia or infections from pressure ulcers, rather than AD itself [55,56].

Table 1: Signs and symptoms observed in AD during different phases of disease

	Signs and symptoms of Alzheimer's Disease			
	Early phase	Middle phase	Late phase	
-	Coming up with correct names	Feeling moody or withdrawn, especially in	Aggressive and demanding behavior in patients	
-	Agnosia and apraxia	socially or mentally challenging situations	Complete aphasia	
-	Alteration in episodic, implicit	Having trouble in controlling bowel and bladder	Complete dependence on other	
	and semantic memory	movements	person/caregiver	
-	Losing or misplacing items	Getting lost and unable recall time	Having difficulty in communication	
-	Increased trouble with planning	Delusions and paranoia about family and	Vulnerable to diseases like pneumonia, ulcers	
	and organizing	caregivers	Changes in physical abilities like walking,	
-	Memory impairments	Initial aphasia and paraphasia	eating, swallowing, etc.	
		Disturbed sleep cycle	Loss of awareness of surroundings	

Treatment of Alzheimer's disease: Neuropharmacological perspectives

Alzheimer's disease (AD) remains incurable, and current therapeutic strategies primarily focus on symptomatic management rather than disease modification. Pharmacological interventions aim to slow cognitive decline, improve quality of life, and mitigate behavioral and psychological symptoms.

Cholinergic-based therapy

Cognitive symptoms of AD are largely treated by optimizing cholinergic neurotransmission. Cholinesterase inhibitors (AChEIs) such as Donepezil, Rivastigmine, and Galantamine are first-line agents, especially in mild-to-moderate AD [32]. These agents inhibit acetylcholinesterase, enhancing acetylcholine availability in the synaptic cleft, thereby improving memory, attention, and learning.

- Galantamine functions as both a reversible AChE inhibitor and a positive allosteric modulator of nicotinic receptors, enhancing cholinergic signaling in the central nervous system. Clinical studies demonstrate improvements in cognition, daily functioning, and behavioral symptoms [53].
- Tacrine, the first approved AChEI, is less commonly used due to hepatotoxicity and adverse effects [32].

Glutamatergic Therapy

Memantine, an NMDA receptor antagonist, is used in moderate-to-severe AD, either as monotherapy or in combination with cholinesterase inhibitors [5,33]. It binds the NMDA receptor ion channel at the magnesium site, reducing glutamate-induced excitotoxicity without impairing normal synaptic transmission. Memantine slows cognitive decline and helps manage neuropsychiatric symptoms, though its disease-modifying potential remains uncertain. Common adverse effects include dizziness and headaches [5].

Behavioral and psychiatric symptom management

Behavioral and psychological symptoms of dementia (BPSD), particularly in late-stage AD, require combined pharmacological and non-pharmacological approaches [34].

 Antipsychotics (e.g., Olanzapine) may help with agitation or aggression, acting on multiple neurotransmitter receptors (dopamine, serotonin, histamine, muscarinic, and alpha-1 adrenergic receptors) [50]. Mood stabilizers such as Carbamazepine have been explored for early BPSD management, while SSRIs or atypical antidepressants are preferred when anxiety or depression coexists [35].

Muscarinic Receptor Agonists

Muscarinic agonists, particularly M1/M4-selective agents like Xanomeline, are under investigation for cognitive enhancement in AD. These drugs modulate cholinergic signaling in cortical and subcortical circuits, potentially improving memory and executive function with fewer peripheral side effects [42,43].

Antioxidant and Neuroprotective Strategies

Oxidative stress contributes significantly to AD pathophysiology. Melatonin has demonstrated antioxidant properties, reducing amyloid-beta (Aβ) toxicity, tau hyperphosphorylation, and apoptosis in preclinical models [56–58]. Selegiline (L-deprenyl), a selective MAO-B inhibitor, exhibits neuroprotective effects by reducing oxidative damage and supporting neuronal survival [51,52].

Hormone Replacement Therapy

Estrogen has been proposed to exert neuroprotective effects via modulation of cerebral blood flow, neurotrophic support, antioxidant activity, and suppression of ApoE-mediated pathology. Clinical trials are ongoing to balance efficacy with safety in hormone replacement therapy for AD prevention and management [15,26,58].

Emerging and adjunctive therapies

Research continues on disease-modifying strategies, including secretase inhibitors, immunotherapy, stem cell therapy, and biomarker-guided interventions. These approaches aim to target amyloid-beta aggregation, tau pathology, and synaptic dysfunction at early stages, potentially altering disease progression.

Conclusion

AD pathogenesis involves extracellular amyloid plaques, intracellular neurofibrillary tangles, synaptic loss, and neuronal death. While genetics, notably ApoE4, and metabolic dysfunctions contribute to risk, current treatments, including AChEIs and NMDA antagonists, only alleviate symptoms

without addressing the underlying pathology. Future neuropharmacological strategies focusing on disease-modifying agents, stem cell therapies, and biomarker-driven early interventions hold promise for more effective management and prevention of AD.

References

- Kumar K, Kumar A, Keegan RM, Deshmukh R. Recent advances in the neurobiology and neuropharmacology of Alzheimer's disease. Biomed Pharmacother. 2018;98:297–307.
- Gilles C, Ertlé S. Pharmacological models in Alzheimer's disease research. Dialogues Clin Neurosci. 2000 Sep;2(3):247–55.
- 3. Massoud F, Gauthier S. Update on the pharmacological treatment of Alzheimer's disease. Curr Neuropharmacol. 2010 Mar;8(1):69–80.
- 4. Anand R, Gill KD, Mahdi AA. Therapeutics of Alzheimer's disease: past, present and future. Neuropharmacology. 2014;76(Pt A):27–50.
- Rogawski MA, Wenk GL. The neuropharmacological basis for the use of memantine in the treatment of Alzheimer's disease. CNS Drug Rev. 2003;9:275–308.
- Webber KM, Raina AK, Marlatt MW, Zhu X, Prat MI, Morelli L, et al. The cell cycle in Alzheimer disease: a unique target for neuropharmacology. Mech Ageing Dev. 2005;126(10):1019–25.
- 7. Drukarch B, Leysen JE, Stoof JC. Further analysis of the neuropharmacological profile of 9-amino-1,2,3,4-tetrahydroacridine (THA), an alleged drug for the treatment of Alzheimer's disease. Life Sci. 1988;42(9):1011–7.
- 8. Nehlig A. The neuroprotective effects of cocoa flavanol and its influence on cognitive performance. Br J Clin Pharmacol. 2013;75(3):716–27.
- 9. Sinyor B, Mineo J, Ochner C. Alzheimer's disease, inflammation, and the role of antioxidants. J Alzheimers Dis Rep. 2020;4(1):175–83.
- 10. Alzheimer's Association. 2021 Alzheimer's disease facts and figures. Alzheimers Dement. 2021;17:327–406.
- 11. Kim JH. Genetics of Alzheimer's disease. Dement Neurocogn Disord. 2018 Dec;17(4):131–6.
- 12. Amaducci LA, Rocca WA, Schoenberg BS. Origin of the distinction between Alzheimer's disease and senile dementia. Neurology. 1986 Nov;36(11):1497.
- Prince M, Wimo A, Guerchet M, Ali G, Wu Y, Prina M. World Alzheimer Report 2015: the global impact of dementia. London: Alzheimer's Disease International;
 2015. Available from: https://www.alz.co.uk/research/WorldAlzheimerReport20
 15.pdf
- Hosseini L, Mahmoudi J, Pashazadeh F, Salehi-Pourmehr H, Sadigh-Eteghad S. Protective effects of nicotinamide adenine dinucleotide and related precursors in Alzheimer's disease: a systematic review of preclinical studies. J Mol Neurosci. 2021 Apr 28. doi: 10.1007/s12031-021-01842-6

- 15. Canadian Study of Health and Aging. Study methods and prevalence of dementia. CMAJ. 1994;150(6):899–913.
- 16. Du X, Wang X, Geng M. Alzheimer's disease hypothesis and related therapies. Transl Neurodegener. 2018;7:2.
- 17. Sastre M, Steiner H, Fuchs K, Capell A, Multhaup G, Condron MM, et al. Presenilin-dependent γ-secretase processing of β-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep. 2001:2:835–41.
- 18. Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology and treatment strategies. Cell. 2019 Oct 3;179(2):312–39.
- 19. Sienski G, et al. APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia. Sci Transl Med. 2021 Mar 3;13(583):eaaz4564.
- 20. Blennow K, de Leon MJ, Zetterberg H. Alzheimer's disease. Lancet. 2006 Jul 29;368(9533):387–403.
- 21. Kim JH. Genetics of Alzheimer's disease. Dement Neurocogn Disord. 2018;17(4):131–6.
- 22. Mahley RW, Weisgraber KH, Huang Y. Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer's disease. Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5644–51.
- 23. Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184–5.
- 24. Wang J, Gu B, Masters C, et al. A systemic view of Alzheimer disease—insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol. 2017;13:612–23.
- 25. Musiek ES, Holtzman DM. Three dimensions of the amyloid hypothesis: time, space and 'wingmen'. Nat Neurosci. 2015;18:800–6.
- 26. Brier MR, Gordon B, Friedrichsen K, McCarthy J, Stern A. Tau and Aβ imaging, CSF measures, and cognition in Alzheimer's disease. Sci Transl Med. 2016;8(338):338ra66.
- 27. Chun W, Johnson GVW. The role of tau phosphorylation and cleavage in neuronal cell death. Front Biosci. 2007;12:733–56.
- 28. Hasselmo ME, Anderson BP, Bower JM. Cholinergic modulation of cortical associative memory function. J Neurophysiol. 1992;67(5):1230–46.
- 29. Fine A, Hoyle C, Maclean CJ, LeVatte TL, Baker HF, Ridley RM. Learning impairments following injection of a selective cholinergic immunotoxin, ME20.4 IgG-saporin, into the basal nucleus of Meynert in monkeys. Neuroscience. 1997;81(2):331–43.
- 30. Summers WK, Viesselman JO, Marsh GM, Candelora K. Use of THA in treatment of Alzheimer-like dementia: pilot study in twelve patients. Biol Psychiatry. 1981 Feb;16(2):145–53.
- 31. Fotiou DF, Stergiou V, Tsiptsios D, Lithari C, Nakou M, Karlovasitou A. Cholinergic deficiency in Alzheimer's and Parkinson's disease: evaluation with pupillometry. Int J Psychophysiol. 2009 Aug;73(2):143–9.
- 32. Birks J. Cholinesterase inhibitors for Alzheimer's disease. Cochrane Database Syst Rev. 2006 Jan 25;(1):CD005593.

- 33. Van Marum RJ. Update on the use of memantine in Alzheimer's disease. Neuropsychiatr Dis Treat. 2009;5:237–47.
- 34. Howard RJ, Juszczak E, Ballard CG, et al. Donepezil for the treatment of agitation in Alzheimer's disease. N Engl J Med. 2007 Oct 4;357(14):1382–92.
- 35. Schneider LS, Tariot PN, Dagerman KS, et al. Effectiveness of atypical antipsychotic drugs in patients with Alzheimer's disease. N Engl J Med. 2006;355(15):1525–38.
- 36. Bentham P, Gray R, Sellwood E, Raftery J. Effectiveness of rivastigmine in Alzheimer's disease. BMJ. 1999;319(7210):640–1.
- 37. DeJong R, Osterlund OW, Roy GE. Measurement of quality of life changes in patients with Alzheimer's disease. Clin Ther. 1989;11:545–54.
- 38. Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease. Cereb Cortex. 1991;1(1):103–16.
- 39. Chan A, Paskavitz J, Remington R, Rasmussen S, Shea TB. Efficacy of a vitamin/nutriceutical formulation for early-stage Alzheimer's disease: a 1-year, open-label pilot study with a 16-month caregiver extension. Am J Alzheimers Dis Other Demen. 2009;23(6):571–85.
- 40. Goedert M, et al. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron. 1989;3(4):519–26.
- 41. Kelly JP, Filley CM. Proneness to psychological distress is associated with risk of Alzheimer's disease. Neurology. 2004 Sep;63(5):941.
- 42. Evans DA, Funkenstein HH, Albert MS, et al. Prevalence of Alzheimer's disease in a community population of older persons. JAMA. 1989;262(18):2551–6.
- 43. Mahley RW, Weisgraber KH, Huang Y. Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer's disease. Proc Natl Acad Sci U S A. 2006;103(15):5644–51.
- 44. Selkoe DJ, Podlisny MB. Deciphering the genetic basis of Alzheimer's disease. Annu Rev Genomics Hum Genet. 2002;3:67–99.
- 45. Ohnishi A, Mihara M, Kamakura H, et al. Comparison of the pharmacokinetics of E2020, a new compound for Alzheimer's disease, in healthy young and elderly subjects. J Clin Pharmacol. 1993;33(11):1086–91.
- 46. Scott LJ, Goa KL. Galantamine: a review of its use in Alzheimer's disease. Drugs. 2000;60(5):1095–122.
- 47. Hossain M, Jhee SS, Shiovitz T, et al. Estimation of the absolute bioavailability of rivastigmine in patients with mild to moderate dementia of the Alzheimer's type. Clin Pharmacokinet. 2002;41(3):225–34.
- 48. Dooley M, Lamb HM. Donepezil: a review of its use in Alzheimer's disease. Drugs Aging. 2000;16(3):199–226. doi: 10.2165/00002512-200016030-00005

- 49. Potter PE. Current investigational drugs for treatment of Alzheimer's disease. Front Clin Drug Res Alzheimer Disord. 2015;4:176–235.
- Bhana N, Perry CM. Olanzapine: a review of its use in the treatment of bipolar I disorder. CNS Drugs. 2001;15(11):871–904. doi: 10.2165/00023210-200115110-00005
- Bostwick JR, Guthrie SK, Ellingrod VL. Antipsychoticinduced hyperprolactinemia. Pharmacotherapy. 2009 Jan;29(1):64–73. doi: 10.1592/phco.29.1.64
- 52. Felder CC. GPCR drug discovery—moving beyond the orthosteric to the allosteric domain. Adv Pharmacol. 2019:86:1–20.
- 53. Lilienfeld S. Galantamine—a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer's disease. CNS Drug Rev. 2002;8(2):159–76. doi: 10.1111/j.1527-3458.2002.tb00221.x
- 54. Carlesimo GA, Oscar-Berman M. Memory deficits in Alzheimer's patients: a comprehensive review. Neuropsychol Rev. 1992;3(2):119–69. doi: 10.1007/BF01108841
- Jelicic M, Bonebakker AE, Bonke B. Implicit memory performance of patients with Alzheimer's disease: a brief review. Int Psychogeriatr. 1995;7(3):385–92. doi: 10.1017/S1041610295002134
- Förstl H, Kurz A. Clinical features of Alzheimer's disease.
 Eur Arch Psychiatry Clin Neurosci. 1999;249(6):288–90.
 doi: 10.1007/s004060050101
- 57. Zhou J, Zhang S, Zhao X, Wei T. Melatonin impairs NADPH oxidase assembly and decreases superoxide anion production in microglia exposed to amyloid-beta1-42. J Pineal Res. 2008;45(2):157–65. doi: 10.1111/j.1600-079X.2008.00570.x
- 58. Feng Z, Zhang JT. Protective effect of melatonin on betaamyloid-induced apoptosis in rat astroglioma C6 cells and its mechanism. Free Radic Biol Med. 2004;37(11):1790– 801. doi: 10.1016/j.freeradbiomed.2004.08.023.